簡易檢索 / 詳目顯示

研究生: 趙志剛
Chao Chih-Kang
論文名稱: 高過冷度鐵基非晶軟磁合金研究
Soft Magnetic Properties of Tin-added Fe-Based Amorphous Alloys with Large Supercooled Liquid Region
指導教授: 金重勳
Chin Tsung-Shune
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 90
中文關鍵詞: 非晶軟磁過冷液相區薄帶變壓器
外文關鍵詞: amorphous, soft magnetic, supercooled liquid region, ribbon, Sn, transformer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本論文以快速凝固-熔液旋淬的方式噴製Fe80-xSnxP12B4Si4 (x=1~8at%) 合金系及Fe78-yAlySn2P12B4Si4 (y=3~5at%) 合金系的非晶薄帶,帶厚約33±5μm ,並將薄帶捲成鐵芯,再做消除應力退火處理,量測磁性質。觀察Sn原子的添加對鐵基非晶合金系性質的影響。

    由DSC分析中,Sn含量增加能有效提高合金的過冷度、擴大過冷液相區,?Tx(= Tx-Tg),提高非晶形成能力。Fe80-xSnxP12B4Si4 (x=1~8at%) 合金系中,當Sn含量x=6 at%時有最大的過冷液相區(?Tx=46.6K)。Fe78-yAlySn2P12B4Si4 (y=3~5at%) 合金系中則在Al含量y=4 at%時有最大的過冷液相區(?Tx=50.2K),且皆為一階段結晶放熱反應。其中Fe74Sn6P12B4Si4非晶合金結晶時一次析出α-Fe、FeP、Fe3P、Fe3B及FeSn五種介金屬化合物。

    所研究合金物系中,以Fe74Al4Sn2P12B4Si4合金為最佳,其具有高過冷度、寬過冷液相區(?Tx=50.2K)的強非晶形成能力及良好的軟磁性質。在經723K、600s熱處理後,其飽和磁通密度Bs可達1.182T、矯頑磁場Hc=3.45A/m、最大導磁率μm達176360,及50Hz頻率交流磁場下為 P1.1/50=0.161 W/kg的低鐵損值,高電阻率(=181.15μΩ-cm )及高於工作溫度的居理溫度Tc=586.1K。

    Fe80-xSnxP12B4Si4 (x=1~6at%)及 Fe78-yAlySn2P12B4Si4 (y=3~5at%) 非晶合金系統有良好的軟磁性能及高過冷度、寬過冷液相區的強非晶形成能力,其中以Fe74Al4Sn2P12Si4B4 合金為最佳,除具有強非晶形成能力外還擁有高電阻率、低鐵損值,在未來有條件可成為製備厚非晶帶捲繞的變壓器非晶鐵芯,提高疊積係數,可有效減少變壓器體積及減少能源損耗。


    Abstract
    Fe80-xSnxP12B4Si4 (x=1~8at%) and Fe78-yAlySn2P12B4Si4 (y=3~5at%) alloys were prepared by melt-spinning method. By the dissolution of Sn atom, the supercooled liquid region, ?Tx(= Tx-Tg), was enlarged and the largest value is 46.6K for Fe74Sn6P12B4Si4 alloy and 50.2K for Fe74Al4Sn2P12B4Si4 alloy by the analysis of DSC, where the crystallization takes place through a single stage exothermic reaction. The effectiveness of Sn atom addition is interpreted to result from the formation of a high degree of dense random packed structure by dissolving the Sn element with larger atomic size.

    The Fe74Sn6P12B4Si4 amorphous alloy exhibiting the largest ?Tx crystallized due to the precipitation of crystalline phasesα-Fe, FeP, Fe3P, Fe3B and FeSn. The long range atomic rearrangement necessary for the nearly simultaneous precipitation of the five crystalline phases seems to cause the appearance of the supercooled liquid region through the retardation of the precipitation reaction.

    The soft magnetic properties of Fe80-xSnxP12B4Si4 (x=1~6 at%) amorphous ribbon annealed state at 723K for 600s are 1.328T to 1.114T for saturation magnetization (Bs), 2.867 to 7.867A/m for coercive force (Hc), 134108 to 48671 for maximum permeability (μm), 593 to 600.5K for the Curie temperature (Tc), 0.071 to 0.2 W/kg for core loss at 50 Hz in 1 T external magnetic field. The resistivity (ρ) is from 154.44 to 187.68 μΩ-cm.

    The soft magnetic properties of Fe78-yAlySn2P12B4Si4 (y=3~5 at%) amorphous ribbon annealed state at 723K for 600s are 1.22T to 1.079T for saturation magnetization (Bs), 2.204 to 3.449A/m for coercive force (Hc), 136645 to 208466 for maximum permeability (μm), 591.1 to 578.3K for the Curie temperature (Tc), 0.143 to 0.161 W/kg for core loss at 50 Hz in 1.1 T extra magnetic field. The resistivity (ρ) is from 175.39 to 188 μΩ-cm.

    The Fe80-xSnxP12B4Si4 and Fe78-yAlySn2P12B4Si4 amorphous alloys exhibit good soft magnetic properties and the wide supercooled liquid region are important for future development of a new type of soft magnetic material for distribution transformers..

    目錄 第一章 緒論…..…………………………………………………………1 1-1 前言…..…………………………………………………………...1 1-2 磁性非晶合金的分類與應用…………………………………….3 1-3 研究動機…..……………………………………………………...4 第二章 文獻回顧及理論基礎…………………………………………..6 2-1 非晶態合金的發展歷史………………………………………….6 2-2 非晶態合金的形成……………………………...………………..8 2-2-1 非晶態合金形成理論………………….….………………...8 2-2-2 玻璃轉換溫度……………………………………….………8 2-2-3 孕核與成長…………………………….….………………...9 2-2-4 臨界冷卻速率……………………………………….……..10 2-3 形成大塊非晶態合金的因素…………………………………...11 2-3-1 玻璃形成能力…………….………………………………...11 2-3-2 約化玻璃轉換溫度………………………………….……..12 2-3-3 過冷液相區………………………………….……………..12 2-3-4 大塊非晶合金的成分特徵………...…….….……………..13 2-3-5 合金原子間的鍵結特性與晶體結構特性………….……..15 2-3-6 共晶成份………….………………………………………..16 2-3-7 非晶態合金組成成分的一般性分類……………….……..16 2-4 鐵基大塊非晶合金的軟磁性能與應用………….……………..17 2-4-1 配電變壓器的性能要求………….…………………...…...18 2-4-2 鐵損值………….……………………………………...…...19 2-4-3 導磁率………….……………………………………...…...21 2-5 非晶態合金之製造方法-快速凝固法…………………….…..22 2-5-1 廣義之非晶態製造方法…………………………………...22 2-5-2 單輪熔液旋淬法…………………………………………...24 第三章 實驗方法與步驟………………………………………………26 3-1實驗流程…………………………………………………………26 3-2 實驗設備與樣品製作…………………………………………...26 3-2-1 合金設計………………………………………..………….26 3-2-2 合金熔配………………..………………………………….27 3-2-3 快速凝固-溶液旋淬………………….…………………….28 3-2-4 環形鐵芯製作……………………………………..……….29 3-2-5 退火處理…………………………………………………...29 3-3 分析與量測……..………………………………………………30 3-3-1 成分分析…………………………………………..……….30 3-3-2 DSC熱性質分析………………………………………....30 3-3-3 X-ray結構分析…………………..………………………....31 3-3-4 磁重分析量測……………………………………………...31 3-3-5 電阻率量測………………………………………………...32 3-3-6 靜態磁性量測……………………………………………...33 3-3-7 動態磁性量測………………………………...…………....34 第四章 結果與討論……………………………………………………35 4-1 鐵基非晶合金成分改變對薄帶性質的影響………...…………35 4-2 成分鑑定………………………………………...………………36 4-3 熱性質分析的結果………………….…………………………..36 4-3-1 Fe80-xSnxP12B4Si4 合金系…………………………….…...37 4-3-2 Fe78-yAlySn2P12B4Si4 合金系……………………………...38 4-4 XRD分析的結果…………………………………...……………39 4-5 添加Sn對鐵基非晶合金非晶形成能力的影響…...……..……41 4-6 磁熱重分析量測結果…………………………………………...42 4-7 電阻率的量測結果………………………..…………………….43 4-8 非晶鐵芯磁性質量測結果………………………………...…....44 4-8-1 靜態磁性量測結果………………………………………...44 4-8-2 動態磁性量測結果………………………………………...45 第五章 結論……………………………………………………………47 5-1 Fe80-xSnxP12B4Si4合金系………………………………….……...47 5-2 Fe78-yAlySn2P12B4Si4 合金系…………………………………….48 5-3 Fe74Al4Sn2P12B4Si4………………………………...…..…………48 未來工作………………………………………………………………..50 參考資料………………………………………………………………..51 附錄……………………………………………………………………..54

    [1] 王一禾、楊膺善,非晶態合金,冶金工業出版社,1989。
    [2] A. Inoue, Acta mater., 48 p.279, 2000.
    [3] J. Kramer, Annln Phys., Vol 37, p.19, 1934.
    [4] J. Kramer, Z. Phys., Vol 106, p.639, 1937.
    [5] A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand., Vol 44, p.109, 1950.
    [6] W. Klement, R. H. Willens, and P. Duwez, Nature, 187, p.869, 1960.
    [7] P. Duwes, Trans. Am. Soc. Metals, Vol 60, p.607, 1967.
    [8] H. S. Chen, Rep. Prog. Phys., 43, p.353, 1980.
    [9] H. W. Kui, A. L. Greer and D. Turnbull, Appl. Phys. Lett., 45, p.615, 1984
    [10] H. W. Kui and D. Turnbull, Appl. Phys. Lett., 47, p.796, 1985
    [11] A. Inoue, K. Ohtera, K. Kita and T. Masumoto, Japan. J. Appl. Phys., 27, L2248, 1988.
    [12] A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. Japan. Inst. Metals, 30, p.965, 1989.
    [13] A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. Japan. Inst. Metals, 31, p.177, 1990.
    [14] A. Peker and W. L. Johnson, Appl. Phys. Lett., 63, p.2342, 1993.
    [15] A. Inoue and N. Nishiyama and T. Matsuda, Mater. Trans. Japan. Inst. Metals, 37, p.181, 1996.
    [16] R. B. Schwarz and Y. He, Mater. Sci. Forum, 235-238, p.231, 1997.
    [17] T. Zhang and A. Inoue, Mater. Trans. Japan. Inst. Metals, 39, p.1001, 1998.
    [18] T. Zhang and A. Inoue, Mater. Trans. Japan. Inst. Metals, 40, p.301, 1999.
    [19] A. Inoue and J. S. Gook, Mater. Trans., JIM, 36. p.1180, 1995.
    [20] A. Inoue, Y. Shinohara and J. S. Gook, Mater. Trans., JIM, 36,
    p.1427, 1995.
    [21] A. Inoue and R. E. Park, Mater. Trans., JIM, 37, p.1715, 1996.
    [22] A. Inoue, A. Murakami, T. Zhang and A. Takeuchi, Mater. Trans., JIM, 38,, p.189, 1997.
    [23] T. Mizushima, A. Inoue and T. Masumoto, IEEE Trans. Magn., 33, p.3784, 1997.
    [24] A. Inoue, Mater. Sci. Eng., A226-A228, p.357, 1997.
    [25] A. Inoue, T. Zhang and T. Itoi, Mater. Trans., JIM, 38, p.359, 1997.
    [26] A. Inoue, M. Koshiba, T. Zhang and A. Makino, Mater. Trans., JIM, 38, p.577, 1997.
    [27] A. Inoue, M. Koshiba, T. Zhang and A. Makino, J. Appl. PH\hys., 83, p.1967,1998
    [28] A. Inoue and A. Makino, Nanostruct. Mater., 9, p.403, 1997.
    [29] A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum, 269-272, p.855, 1998.
    [30] A. Inoue and W. Zhang, J. Appl. Phys., 85, p.000, 1999.
    [31] D.E. Polk and B. C. Giessen, In Rapid Solidfication Technology Source Book, ASM, Metals Park, Ohio, 1983.
    [32] F. E. Luborsky, "Amorphous Metallic Alloys", Butterworths Monographs in Materials, London, UK, p.19-20, 1983.
    [33] D. A. Porter and K. E. Easterling, "Phase Transformations in Metals and Alloys", Chapman and Hill, New York, USA, p.186-197, 1991.
    [34] D. A. Porter and K. E. Easterling, "Phase Transformations in Metals and Alloys", Chapman and Hill, New York, USA, p.287-291, 1991.
    [35] D. R. Uhlmann, "A Kinetic Treatment of Glass Formation", Journal of Non-Crystalline Solids, Vol 7, p.337-348, 1972.
    [36] A. Inoue, Mater. Trans. Japan. Inst. Metals, 36, p.886, 1995.
    [37] A. Inoue, Mater. Sci. Eng., A226-A228, p.357, 1997.
    [38] A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum, 269-272, p.855, 1998.
    [39] A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., 29A, p.1779, 1998.
    [40] A. Inoue, "Bulk Amorphous Alloys", Trans Tech Publications, Zurich, 1999.
    [41] A. Inoue and Rae Eun Park, Materials Transactions, JIM, vol 37, No 11, p.1715, 1996.
    [42] 侯春看,李三保,胡塵滌,合金元素對低碳電磁鋼片磁性影響之研究, 國立清華大學博士論文,中華民國七十九年四月。
    [43] 黃森煥,金重勳,快速凝固法研製稀土-過渡元素合金及其基本特性探討,國立清華大學博士論文,中華民國八十年七月。
    [44] 汪建民,材料分析,中國料科學學會,p.353.,413,145,民87年。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE