研究生: |
周婉臻 Chou, Wan-Cheng |
---|---|
論文名稱: |
高品質因子二階系統振盪頻率鎖定之設計與實作 Design and implementation of oscillation frequency locking for high quality factor second-order systems |
指導教授: |
陳榮順
Chen, Rongshun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 微陀螺儀 、微掃描鏡 、鎖相迴路 |
外文關鍵詞: | gyroscope, micromirror, phase-locked loop |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用半數位式鎖相迴路,將微致動器驅動在其共振頻率上,其中,微元件僅需符合高品質因子、共振頻率在千赫茲等級、且可等效為二階系統等條件。相較於以往使用類比式鎖相迴路而言,因迴路穩定性不受輸入訊號振幅大小影響,故在不調整任何迴路參數的情況下,其適用的系統變得更為廣泛,而相較於利用適應性控制驅動微元件的方式來說,則整體架構較為容易實現。
經由迴路設計與軟體模擬,使整體迴路可以針對驅動對象的共振頻率達成穩定且快速的鎖定,而整體驅動架構亦利用市售電子元件加以實現,並使用RLC電路等效多組不同參數的二階系統,驗證驅動迴路應用在不同品質因子或不同結構共振頻的系統上,均可達成穩定的鎖頻。
以共振頻率分別在6.02 kHz與4.35 kHz左右的微掃描鏡做為驅動實驗對象,成功達到鎖頻的目標,驗證此驅動架構可使微元件被驅動在其結構共振頻率上,並得到最大振幅的輸出。未來若應用在微陀螺儀上,將可提升其感測角速率之靈敏度。
The present study has employed the half-digital phase-locked loop (PLL) as the driving system to ensure the microacuator working frequency fixed on its resonant frequency. Because there is no influence on the stability of half-digital PLLs when the amplitude of input signal is changing, the half-digital PLL is more robust than the analog PLL.
Matlab/Simulink 7.1 is used in the simulation with the designed PLL. In terms of implementation, the off-the-shelf IC components are used to realize the PLL driving system, and applied to drive the RLC circuits and micro scanning mirrors. In the experimental results, the designed PLL successfully tracks the resonant frequency of micro scanning mirrors and RLC circuits with various system parameters.
In the future, the driving system can be used in driving micro-gyroscope for sensitivity-promoting.
[1] W. C. Tang, T. C. H. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Salt Lake City, pp. 53-59, 1989.
[2] H. A. Yang, T. L. Tang, S. T. Lee, and W. Fang, “A novel coilless scanning mirror using eddy current Lorentz force and magnetostatic force,” Journal of Microelectromechanical systems, vol. 16, pp. 511-520, 2007.
[3] R. P. Leland, “Adaptive tuning for vibrational gyroscopes,” Proceedings of 40th IEEE Conference on Decision and Control, vol. 4, pp. 3447-3452, 2001.
[4] X. Sun, R. Horowitz, and K. Komvopoulos, “Stability and resolution analysis of a phase-locked loop natural frequency tracking system for MEMS fatigue testing,” Journal of Dynamic Systems, Measurement, and Control, vol. 124, no. 4, pp. 599-605, 2002.
[5] C. Wang, H. H. Yu, M. Wu, and W. Fang, “Implementation of phase-locked loop control for MEMS scanning mirror using DSP,” Sensors and Actuators, A: Physical, vol. 133, pp. 243-249, 2007.
[6] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1640-1659, Aug., 1998.
[7] F. Gardner, “Charge-pump phase-lock loops,” IEEE Transactions on Communications, vol. 28, pp. 1849-1858, 1980.
[8] W. A. Clark, T. Juneau, and R. T. Howe, “Micromachined vibratory rate gyroscope,” U. S. Patent 6067858A, 1997.
[9] A. M. Shkel, R. Horowitz, A. A. Seshia, S. Park, and R. T. Howe, “Dynamics and control of micromachined gyroscope,” Proceedings of American Control Conference, San Diego, CA, vol. 3, pp. 2119-2124, Jun., 1999.
[10] R. P. Leland, “Adaptive control of a MEMS gyroscope using Lyapunov methods,” IEEE Transactions on Control Systems Technology, vol. 14, pp. 278-283, 2006.
[11] R. P. Leland, Y. Lipkin, and A. Highsmith, “Adaptive oscillator control for a vibrational gyroscope,” Proceedings of American Control Conference, Denver, Colorado, vol. 4, pp. 3347-3352, Jun., 2003.
[12] Q. Zheng, L. Dong, and Z. Gao, “A novel control system design for vibrational MEMS gyroscopes,” Sensors and Transducers Journal, vol. 78, pp. 1073-1082, 2007.
[13] L. Dong, Q. Zheng, and Z. Gao, “A novel oscillation controller for vibrational MEMS gyroscopes,” Proceedings of American Control Conference, New York City, pp. 3204-3209, Jul., 2007.
[14] Z. Gao, “Active disturbance rejection control: a paradigm shift in feedback control system design,” Proceedings of American Control Conference, Minneapolis, Minnesota, pp. 2399-2405, Jun., 2006.
[15] B. Mo, X. Liu, X. Ding, and X. Tan, “A novel closed-loop drive circuit for the micromechined gyroscope,” International Conference on Mechatronics and Automation, Harbin, China, pp. 3384-3389, Aug., 2007.
[16] W. T. Sung, S. Sung, J. Y. Lee, T. Kang, Y. J. Lee, and J. G. Lee, “Development of a lateral velocity-controlled MEMS vibratory gyroscope and its performance test,” Journal of Micromechanics and Microengineering, vol. 18, pp. 1-13, 2008.
[17] 劉深淵,楊清淵,”鎖相迴路”,滄海書局,民國九十七年。
[18] B. Razavi, “Design of analog CMOS integrated circuits,” McGraw- Hill, 2001.
[19] 蔡登宏,”解耦合微型振動陀螺儀之設計與分析”,國立清華大學博士論文,民國九十六年。