簡易檢索 / 詳目顯示

研究生: 蘇炳誠
Ping-Cheng Su
論文名稱: 5.2 GHz CMOS射頻前端電路設計
The design of 5.2 GHz CMOS RF front-end circuit
指導教授: 龔 正
J. Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 90
中文關鍵詞: 低雜訊放大器壓控震盪器混頻器RFCMOS射頻前端電路
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文裡,我們設計以TSMC 0.18um RF CMOS 製程為基礎的射頻前端電路區塊,它包括:低雜訊放大器(LNA),壓控震盪器(VCO),混頻器(mixer)等電路,其中LNA以共源極電感退化式放大器為架構,VCO的架構為互補式cross-coupled式架構,混頻器則選擇以主動式Gilbert cell混頻器為主。在電路規格上,所有設計的輸出皆符合IEEE 802.11a WLAN的規範,有些IEEE 802.11a WLAN規格所沒有明確的規範,將以參考其它論文所訂之規格為主。電路區塊輸入射頻(RF)頻率為5.2 GHz,本地震盪(LO)器的頻率為5.0GHz,中頻輸出頻率為200MHz。在電路模擬過程上以ADS 射頻軟體進行,並且以 ASITIC 電感模型取代TSMC無法提供的特殊規格電感模型。考量製程上飄移因素,模擬中以TSMC corner case進行電路模擬,使電路在最惡劣的製程環境下,所設計的功能仍能符合我們所訂的規格。個別電路模擬所得的重要結果有:低雜訊放大器S11 為-15.87dB ,NF (50Ω)為2.29 dB,混頻器(mixer)的IIP3為-0.05 dB,轉換增益為-0.23dB,壓控震盪器的相位雜訊(1MHz offset frequency)為-109.4 dB,其中壓控震盪器為了避免負載效應與基板洩漏的效應,在混波器與壓控震盪器之間插入一個緩衝器電路以增加埠與埠隔離度。最後將個別電路加以整合,形成我們所要的核心區塊,整體電路的重要輸出結果有:S11參數為-13.75dB,轉換增益為19.93dB ,NF (50Ω)為4.69 dB,IIP3為-16.94 dB,整體功率消耗為46.46mW。最後所有的輸出結果皆符合IEEE 802.11a WLAN所規範規格,無論在任何 製程飄移的corner case下。


    In this thesis, we design a radio-frequency front-end circuit block base on TSMC 0.18um RF CMOS process model. The circuit includes low-noise amplifier (LNA), voltage-controlled oscillator (VCO) and mixer. The LNA frame is the common-source with inductive degeneration LNA, VCO is complementary cross-coupled pair structure, and mixer structure is the active Gilbert cell. The output specifications of the designed circuit blocks follow the IEEE 802.11a WLAN specifications. Some specifications except IEEE 802.11a WLAN specifications reference to other papers or researches. The input RF frequency of our designed blocks is 5.2 GHz , LO output frequency is 5.0 GHz, and IF output frequency is 200 MHz. We use ADS RF software to simulate the circuit, and use ASITIC inductor model to design inductors that are not involved in TSMC model. Considering about the process variation, we simulate circuit with corner cases supported by TSMC model to verify our design. The independent unit circuit important output results are listed as the following : The LNA S11 is -15.87 dB, NF is 2.29dB , mixer IIP3 is -0.05dB, conversion gain is -0.23dB, and the VCO phase noise is -109.4 dB at 1MHz offset frequency. In order to avoid the substrate feed-through and loading effect, we insert a buffer circuit between VCO and mixer to increase the port to port isolation. Finally, we merge all independent units to form the core circuit blocks that we wanted. The block circuit output results are: S11 is-13.75 dB, conversion gain is 19.93dB, NF (50Ω) is 4.69 dB, IIP3 is 16.94 dB, and of the entire circuit power consumption is 46.46mW. The final output result is conformed to IEEE 802.11a WLAN specification at all corner cases.

    第一章 緒論 1 1.1 研究動機及相關背景1 1.2 論文簡介 3 第二章 射頻電路設計基本觀念 5 2.1簡介5 2.2 射頻前端電路核心電路 5 2.3 射頻電路上的參數 8 2.3.1 轉換增益 8 2.3.2 雜訊係數 8 2.3.3 靈敏度 10 2.3.4 線性度 10 2.3.5 埠隔離度 16 2.3.6 穩定因素 16 第三章 矽基板單晶螺旋電感設計 18 3.1 簡介 18 3.2 單晶螺旋電感的基本結構 19 3.2.1 一般常見矽基板上單晶電感的結構 19 3.2.2 單晶螺旋電感的等效電路模型 20 3.3 非理想單晶螺旋電感的損耗 21 3.3.1 歐姆損耗 21 3.3.2 電容效應的損耗 22 3.3.3 單晶電感的等效電路模型 23 3.3.4 電感品質因素 26 3.4 單晶螺旋電感設計與模擬 28 3.4.1 設計考量 28 3.4.2 ASITIC電感設計與模擬 30 第四章 射頻前端電路 31 4.1簡介 31 4.2 低雜訊放大器31 4.2.1 設計考量31 4.2.2 CMOS MOSFET 雜訊模型 34 4.2.3 共源極電感退化低雜訊放大器 36 4.3 壓控震盪器 38 4.3.1 設計考量 38 4.3.2 工作原理 41 4.3.3 壓控振盪器之變容器 43 4.3.4 相位雜訊 44 4.3.5 互補式cross-coupled VCO電路 47 4.4 混頻器 49 4.4.1工作原理 49 4.4.2 設計考量 50 4.4.3 Gilbert cell混頻器 52 4.5 射頻前端接收器 53 4.5.1超外差接收器 54 4.5.2 直接降頻接收器 55 4.5.3 低中頻接收器 58 4.6 IEEE 802.11a傳輸器簡介 59 第五章 前端射頻電路模擬與設計 63 5.1簡介 63 5.2 核心電路區塊 63 5.3 低雜訊放大器模擬設計 66 5.4 混頻器模擬設計 71 5.4 壓控震盪器模擬設計 75 5.5 核心區塊電路設計結果 80 5.6結論 84 第六章 結論與未來展望 85 參考文獻 88

    [1] Akira Matsuzawa, “RF-SoC—Expectations and Required Conditions”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 1, JANUARY 2002 245.
    [2] John D. Cressler, “ Silicon germanium heterojunction bipolar technology: the next leap in silicon?” Solid-State Circuits Conference, 1994. Digest of Technical Papers. 41st ISSCC, pp24-27, Feb., 1994.
    [3] P. Nicopolitidis, M. S. Obaidat, G. I. Papadimitriou, A. S. Pomportsis , ”Wireless Networks”, John Wiley & Sons Ltd, 2001.
    [4] Behzad Ravavi, “RF Microelectronics”, Prentice-Hall, Inc. 1998.
    [5] Thomas H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits”, Cambridge University Press, 1998.
    [6] Paul H. Young, “Electronic Communication Techniques”, Prentice Hall International, Inc. Fourth Editioin1999.
    [7] Kai Chang, “Microwave Solid-State Circuits and Applications", John Wiley & Sons, Inc. 1994
    [8] T. H. Lee and S. Simon Wong, “CMOS RF Integrated Circuits at 5 GHz and Beyond,1998.
    [9] Joachim N. Burghartz, D. C. Edelstein, H. A. Ainspan, and Keith A. Jenkins ,”RF Circuit Design Aspects of Spiral Inductors on Silicon”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 12, DECEMBER 1998.
    [10] T. H. Lee ,“The design of CMOS radio-frequency circuits”, pp 47~50,1998.
    [11] C. P. Yue, and S. S. Wang, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid -State Circuits, vol. 33, no. 5, pp. 743-752, May 1998.
    [12] Min Park, Seonghearn Lee, Cheon Soo Kim, Hyun Kyu Yu, Hyun Kyu Yu, and Kee Soo Nam, “The Detailed Analysis of High CMOS-Compatible Microwave Spiral Inductors in Silicon Technology “,, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 45, NO. 9, SEPTEMBER 1998 1953.
    [13]José M. López-Villegas, , Josep Samitier, , Charles Cané, Pere Losantos, and Joan Bausells,” Improvement of the Quality Factor of RF Integrated
    Inductors by Layout Optimization”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 1, JANUARY 2000
    [14] “Analysis and Simulation of Inductors and Transformers for Integrated Circuits,” provided by Berkley.
    [15] Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill Previews Edition 2001.
    [16] Derek K. Shaeffer and Thomas H. Lee, “A 1.5V, 1.5GHz CMOS Low Noise Amplifier”, IEEE Journal of Solid-State Circuits, vol.32, no.5, pp.745-759, May 1997.
    [17] TSMC 0.18um RF CMOS ADS model.
    [18] Thomas H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits”, 0Cambridge University Press, 1998.
    [19] Kai-Cheung Juang, “ Low Phase Noise Ka-band Oscillator ”, Institute of
    Communication Nation Chiao Tung University, pp. 8-9, 1999.
    [20] Yongmin Ge and Kartikeya Mayaram, “A Comparative Analysis of CMOS Noise Amplifier for RF Applications”, IEEE, pp.IV-349-352, 1998.
    [21] Kai-Cheung Juang, “ Low Phase Noise Ka-band Oscillator ”, Institute of
    Communication Nation Chiao Tung University, pp. 8-9, 1999.
    [22] Behzad Razavi, “ Design of Integrated Circuits for Optical Communications ”, McGraw-Hill International Edition, 2003.
    [23] Pietro Andreani & Sven Mattisson, “ On the Use of MOS Varactors in RF VCO’s ”, IEEE Journal of Solid-State Circuits, Vol. 35, No. 6, June 2000.
    [24] Tso-Cheng Hsu, “ S-Band Voltage Controlled Oscillator Development and
    Characterization ”, Institute of Communication Nation Chiao Tung University, 1998.
    [25] Che-Sheng Chen, “ A design of 2.4 GHz CMOS FHSS Receiver ”, Institute of Communication Nation Chiao Tung University, 2000.
    [26] Ali Hajimiri, “ The Design of Low Noise Oscillators ”, California Institute of
    Technology, 1999.
    [27] Keng Leong Fong, Robert G. Meyer, “Monolithic Rf Active Mixer Design”, IEEE Transactions on Circiuts and Systmes II: Analog and Digital Signal Processing, Vol. 46, No.3, Mar. 1999.
    [28] Teresa H. Meng, Stanford University Bill McFarland, David Su, and John Thomson, Atheros Communications, “Design and Implementation of an
    All-CMOS 802.11a Wireless LAN Chipset”.
    [29]Masoud Zargari, David K. Su, Member, C. Patrick Yue, Shahriar Rabii,
    David Weber, Brian J. Kaczynski,, Srenik S. Mehta, Kalwant Singh, Sunetra Mendis,and Bruce A. Wooley,”A 5-GHz CMOS Transceiver for IEEE 802.11a
    Wireless LAN Systems”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 12, DECEMBER 2002.
    [30]Zheng Yuanjin and Tear, Chin Boon Terry, “5G Wireless LAN RF transceiver system design : a new optimization approach”. ICCS 2002.
    [31]T. H. Lee, “5-GHz CMOS Wireless LANs,” IEEE Transactions on Microwave
    Theory and Techniques, vol. 50, no. 1, pp. 268-280, Jan. 2002.
    [32] Samavati, H.; Rategh, H.R.; Lee, T.H.“A 5-GHz CMOS wireless LAN receiver front end”,Solid-State Circuits, IEEE Journal of , Volume: 35 , Issue: 5 , May 2000 Pages:765 – 772.
    [33] Ting-Ping Liu; Westerwick, E.; Rohani, N.; Ran-Hong Yan,”5 GHz CMOS radio transceiver front-end chipset”,Solid-State Circuits Conference, 2000. Digest of Technical Papers. ISSCC. 2000 IEEE International , 7-9 Feb. 2000 ,Pages:320 - 321, 467-8.
    [34]John Janssens and Michiel Steyaert , “ CMOS cellular receiver front-ends from specification to realization “ ,edition 2002 ,Kluwer Academic Publishers,Boston.
    [35] Li, Q.; Yuan, J.S. ;”Linearity analysis and design optimisation for 0.18 μm CMOS RF mixer”,Circuits, Devices and Systems, IEE Proceedings [see also IEE Proceedings G- Circuits, Devices and Systems] , Volume: 149 , Issue: 2 , April 2002
    Pages:112 – 118.
    [36]Frontend analog and digital technology cor. Taiwan.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE