研究生: |
鮑松諺 Pao, Sung-Yen |
---|---|
論文名稱: |
太赫茲技術在微流體晶片和人造骨影像呈現的應用 Application of Microfluidic Chip and Image of Artificial Bone by Terahertz Technique |
指導教授: |
饒達仁
Yao, Da-Jeng |
口試委員: |
嚴大任
Yen, Ta-Jen 吳小華 Wu, Hsiao-Hua |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 太赫茲波 、人造骨影像 、介電泳 、超材料 |
外文關鍵詞: | terahertz wave, image of artificial bone, dielectrophoresis, metamaterial |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文根據太赫茲波的特性進行一系列的實驗,除了人造骨的太赫茲波影像呈現,也結合微流體晶片進行溶液中微小粒子和不同濃度溶液的檢測。
首先,本研究透過太赫茲波對極性和非極性材料的穿透性差異及接收器偵測到的太赫茲波強度分布,進行在人造骨的影像呈現,目前以1.5 x 1.5 mm的影像解析度成功做出直徑5 mm孔洞的影像。
接著,不同的材料在不同頻率底下,亦對太赫茲波有不同的吸收度,因此本研究將微流體晶片結合介電泳技術,透過非均勻交流電場,將流體中的微小粒子匯聚在最小線寬為30 µm的電極上,並曝照太赫茲波,0.33 THz成為本研究觀察實驗結果的重點頻段。
除了結合介電泳技術外,亦將微流體晶片和超材料結合,超材料在經過太赫茲波曝照後,會產生共振效應,此研究模擬並使用了共振頻率在0.42和0.60 THz的超材料,經太赫茲時域光譜儀檢測後,皆成功觀察到超材料使某頻段的訊號差異放大,且在注入多種不同濃度的液體後,亦觀察到訊號強度的差異及共振頻率的位移,其中共振的頻率位移與液體濃度呈正相關。
In this paper, a series of experiments are carried out according to the characteristics of terahertz wave. In addition to the terahertz image of artificial bone, microfluidic chips are also used to detect small particles in fluids and different concentrations of solution.
First, in this study, the image of the artificial bone is imaged by the difference in the penetration of the terahertz wave to the conducting and non-conducting materials and the intensity distribution of the terahertz wave detected by the receiver. So far, a 5 mm-diameter hole can be imaged by 1.5 x 1.5 mm-image resolution.
Then, different materials have different terahertz absorption at different frequencies. Therefore, through a non-uniform alternating electric field, a microfluidic chip with dielectrophoresis technology is used to capture particles in the fluid on 30 μm-width electrodes, then exposed to terahertz wave. 0.33 THz became the key frequency band for the experimental results in this study.
Metamaterials are also combined with microfluidic chips, which produce resonance effects after exposed to terahertz waves. This study uses metamaterials with resonant frequencies at 0.42 and 0.60 THz, which successfully amplify the signal difference at certain frequency band. The difference of signal intensity and shift of resonance frequency were also observed, after injecting a variety of different concentrations of liquid.
1. Tonouchi, M., Cutting-edge terahertz technology. Nature photonics, 2007. 1(2): p. 97.
2. George, P.A., et al., Microfluidic devices for terahertz spectroscopy of biomolecules. Optics Express, 2008. 16(3): p. 1577-1582.
3. Tang, Q., et al., Microfluidic devices for terahertz spectroscopy of live cells toward lab-on-a-chip applications. Sensors, 2016. 16(4): p. 476.
4. Tang, Q., et al. Development of terahertz (THz) microfluidic devices for “Lab-on-a-Chip” applications. in Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications. 2013. International Society for Optics and Photonics.
5. Ferguson, B. and X.-C. Zhang, Materials for terahertz science and technology. Nature materials, 2002. 1(1): p. 26.
6. 孙立新, 王国富, and 张继武, THz 关键技术及其在生物医学中的应用. 应用光学, 2005. 26(1): p. 4-8.
7. 伊如汉, et al., 太赫兹波辐射生物效应研究现状与展望. 中华放射医学与防护杂志, 2018. 38(3): p. 230-235.
8. Kaindl, R.A., et al., Far-infrared optical conductivity gap in superconducting MgB 2 films. Physical review letters, 2001. 88(2): p. 027003.
9. Liu, H.-B., et al., Terahertz spectroscopy and imaging for defense and security applications. Proceedings of the IEEE, 2007. 95(8): p. 1514-1527.
10. Xie, L., Y. Yao, and Y. Ying, The application of terahertz spectroscopy to protein detection: a review. Applied Spectroscopy Reviews, 2014. 49(6): p. 448-461.
11. Federici, J.F., et al., THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology, 2005. 20(7): p. S266.
12. Amenabar, I., F. Lopez, and A. Mendikute, In introductory review to THz non-destructive testing of composite mater. Journal of Infrared, Millimeter, and Terahertz Waves, 2013. 34(2): p. 152-169.
13. Hu, B.B. and M.C. Nuss, Imaging with terahertz waves. Optics letters, 1995. 20(16): p. 1716-1718.
14. 张兴宁, 陈稷, and 周泽魁, 太赫兹时域光谱技术. 2005.
15. Zhang, X.C., Y. Jin, and X. Ma, Coherent measurement of THz optical rectification from electro‐optic crystals. Applied Physics Letters, 1992. 61(23): p. 2764-2766.
16. 赵尚弘 and 陈国夫, THz 射线产生技术及应用最新进展. 激光技术, 2000. 24(6): p. 351-350.
17. Zhang, X.C., et al., Terahertz optical rectification from a nonlinear organic crystal. Applied Physics Letters, 1992. 61(26): p. 3080-3082.
18. Chen, Q. and X.-C. Zhang, Polarization modulation in optoelectronic generation and detection of terahertz beams. Applied Physics Letters, 1999. 74(23): p. 3435-3437.
19. 张希成, 太赫兹科学与技术研究回顾. 物理, 2003. 32(05): p. 0-0.
20. Khoshmanesh, K., et al., Dielectrophoretic platforms for bio-microfluidic systems. Biosensors and Bioelectronics, 2011. 26(5): p. 1800-1814.
21. Çetin, B. and D. Li, Dielectrophoresis in microfluidics technology. Electrophoresis, 2011. 32(18): p. 2410-2427.
22. Pethig, R., Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics, 2010. 4(2): p. 022811.
23. Pohl, H.A., The motion and precipitation of suspensoids in divergent electric fields. Journal of Applied Physics, 1951. 22(7): p. 869-871.
24. Choi, E., B. Kim, and J. Park, High-throughput microparticle separation using gradient traveling wave dielectrophoresis. Journal of Micromechanics and Microengineering, 2009. 19(12): p. 125014.
25. El Debs, B., et al., Functional single-cell hybridoma screening using droplet-based microfluidics. Proceedings of the National Academy of Sciences, 2012. 109(29): p. 11570-11575.
26. Najah, M., A.D. Griffiths, and M. Ryckelynck, Teaching single-cell digital analysis using droplet-based microfluidics. 2012, ACS Publications.
27. Mazutis, L., et al., Single-cell analysis and sorting using droplet-based microfluidics. Nature protocols, 2013. 8(5): p. 870.
28. Perro, A., et al., Mastering a double emulsion in a simple co-flow microfluidic to generate complex polymersomes. Langmuir, 2010. 27(14): p. 9034-9042.
29. Garstecki, P., et al., Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on a Chip, 2006. 6(3): p. 437-446.
30. Powell, K., Fertility treatments: seeds of doubt. 2003, Nature Publishing Group.
31. Yin, H. and D. Marshall, Microfluidics for single cell analysis. Current opinion in biotechnology, 2012. 23(1): p. 110-119.
32. Born, B., et al., Solvation dynamics of model peptides probed by terahertz spectroscopy. Observation of the onset of collective network motions. Journal of the American Chemical Society, 2009. 131(10): p. 3752-3755.
33. Podzorov, A. and G. Gallot, Low-loss polymers for terahertz applications. Applied optics, 2008. 47(18): p. 3254-3257.
34. Makimura, K., S.Y. Murayama, and H. Yamaguchi, Detection of a wide range of medically important fungi by the polymerase chain reaction. Journal of Medical Microbiology, 1994. 40(5): p. 358-364.
35. Belgrader, P., et al., PCR detection of bacteria in seven minutes. Science, 1999. 284(5413): p. 449-450.
36. Woodward, R., et al., Terahertz pulsed imaging of skin cancer in the time and frequency domain. Journal of Biological Physics, 2003. 29(2-3): p. 257-259.
37. Park, H.-R., et al., Colossal absorption of molecules inside single terahertz nanoantennas. Nano letters, 2013. 13(4): p. 1782-1786.
38. Seo, M., et al., Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nature Photonics, 2009. 3(3): p. 152.
39. Berrier, A., et al., Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators. Optics express, 2012. 20(5): p. 5052-5060.
40. Hong, J., et al., Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices. The Journal of Physical Chemistry Letters, 2013. 4(22): p. 3950-3957.
41. Park, D., et al., Terahertz near-field enhancement in narrow rectangular apertures on metal film. Optics express, 2009. 17(15): p. 12493-12501.
42. Park, S., et al., Detection of microorganisms using terahertz metamaterials. Scientific reports, 2014. 4: p. 4988.
43. Chen, H.-T., et al., Active terahertz metamaterial devices. Nature, 2006. 444(7119): p. 597.
44. Pohl, H.A., Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields (Cambridge Monographs on physics). 1978: Cambridge/New York: Cambridge University Press.
45. Jones, T.B. and T.B. Jones, Electromechanics of particles. 2005: Cambridge University Press.
46. Choi, W., et al., Dielectrophoretic oocyte selection chip for in vitro fertilization. Biomedical Microdevices, 2008. 10(3): p. 337-345.
47. Fuhr, G., et al., High-frequency electric field trapping of individual human spermatozoa. Human reproduction (Oxford, England), 1998. 13(1): p. 136-141.
48. Berthier, J., Micro-drops and digital microfluidics. 2012: William Andrew.