簡易檢索 / 詳目顯示

研究生: 詹智翔
論文名稱: 光電式透明電路檢測技術
AN ELECTRO-OPTICAL INSPECTION TECHNOLOGY FOR TRANSPARENT CIRCUITS
指導教授: 林士傑
口試委員: 范光照
王立康
戴鴻名
葉廷仁
陳政寰
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 116
中文關鍵詞: 透明導電物磷酸二氘鉀高分子分散液晶透明電路
外文關鍵詞: Transparent Conductive Oxide (TCO), Deuterated Potassium Dihydrogen Phosphate (KD2PO4), Polymer Dispersed Liquid Crystal (PDLC), Transparent Circuit
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於現今的科技產業中,透明導電物製備開發形成透明電路之用途,已廣泛地應用在觸控面板、顯示器,太陽能電池等多種的產品。然而在製備透明電路圖樣的過程中,有可能因蝕刻不完全殘留導電物而發生電路圖樣出現斷、短路等缺陷而造成功能不全。
    面對檢測透明電路圖樣上的電性瑕疵,因其高透明度的特徵並不易從光學上的形貌去判斷透明電路的電性功能,若透過電性檢測的方式,則常是根據回饋的訊號作為電性上的判斷依據。是以本研究由形貌、電性二者特徵導向研發電性敏感物質之感測元件。
    為了對具有高透明度與良好導電特性的透明電路進行檢測,在本研究中,前後使用兩種電場敏感物質─磷酸二氘鉀、高分子分散液晶作為感測元件,透過施加外部電壓建構一感應電場之下,此時人員或電腦可藉由觀察感測元件的狀態,得以分辨透明電路圖樣上的導電區域與不導電區域並可確認具電性區域的良善。經由可行性的初步試驗後,並對透明電路圖樣包括導電區和蝕刻不導電區的線寬,進行一系列的靈敏度模擬以及實驗驗證。期望可透過檢測透明電路的瑕疵、缺陷以發現製程或設備上的問題,進而有助益於提升良率。


    Transparent conductive oxide (TCO) film is commonly adopted as transparent circuit, which is widely used in touch panels, displays, solar cells, etc. However, un-etched TCO remnants are frequently found in the manufacture process. These remnants and other defects may affect the function of the circuits.
    Owing to the relation between the optical profile and the conductivity of remnant of the transparent circuits is not strongly correlated, while most optical methods were more focused on depicting the structure or morphology of the objective and then could only detect defective circuits indirectly. Even on the ways of electrical testing such as probe or tip depend on the response of electrical signal will need or waste a lot of time.
    It is desired to design the set-up such that the instrument is capable of picking up signals that can differentiate the conducting area from non-conducting area for the transparent circuit. Both KD2PO4 and PDLC were used as the electro-optical sensing device in the study. Preliminary test was revealed the feasibility of the approach at first. And a series of simulation and experimental results were conducted to study effects of system parameters and evaluate the performance on the limitation of the inspection system for the transparent circuit. Developed system may be effect and helpful to match the original design and locate faulty shut/open circuits.

    中文摘要 IV ABSTRACT V 圖目錄 VI 表目錄 IX 第1章 緒論 1 第2章 文獻回顧 9 2.1透明導電物的製備、應用與發展 9 2.2 相關檢測技術的回顧 11 2.3 電場敏感物質 19 2.4 小結 20 第3章 研究目的、方法與步驟 31 3.1 檢測設備基本原理 31 3.2 實驗方法與步驟 33 第4章 磷酸二氘鉀-作動原理、系統規劃、模擬與實驗結果 36 4.1 基本作動原理 36 4.2 系統規劃 39 4.3 模擬結果與初步可行性實驗 42 4.4結果與討論 43 第5章 高分子分散液晶–作動原理、系統規劃、模擬與實驗結果 52 5.1 基本作動原理 52 5.2 透明導電膜實驗 55 5.3 可行性實驗 56 5.4 系統靈敏度分析 59 5.5 靈敏度實驗規劃與驗證 64 5.6 檢測系統的改善 66 第6章 結論 102 6.1 磷酸二氘鉀與高分子分散液晶的二者探討 102 6.2 未來展望 103 參考文獻 105

    [1] T. Minami et al., “Substitution of Transparent Conducting Oxide Thin Films for Indium Tin Oxide Transparent Electrode Applications,” Thin Solid Films, Vol.516, pp.1314–1321 (2008).
    [2] H. Liu et al., “Transparent Conducting Oxides for Electrode Applications in Light Emitting and Absorbing Devices,” Superlattices and Microstructures, Vol.48, pp.458–484 (2010).
    [3] C. Goebbert et al., “Wet Chemical Deposition of ATO and ITO Coatings using Crystalline Nanoparticles Redispersable in Solutions,” Thin Solid Films, Vol.351, pp.79-84 (1999).
    [4] Beomjin Yoo et al., “ITO/ATO/TiO2 Triple-layered Transparent Conducting Substrates for Dye-sensitized Solar Cells,” Solar Energy Materials & Solar Cells, Vol.92, pp.873– 877 (2008).
    [5] G. Gruner, “Carbon Nanotube Films for Transparent and Plastic Electronics,” Journal of Materials Chemistry, Vol.16, pp.3533–3539 (2006).
    [6] David S. Hecht et al., “Carbon-nanotube Film on Plastic as Transparent Electrode for Resistive Touch Screens,” Journal of the SID, 17/11, pp. 941-946 (2009).
    [7] E. Kymakis et al., “Carbon Nanotube/PEDOT:PSS Electrodes for Organic Photovoltaics,” European Physical Journal-applied Physics, Vol.36, pp.257–259 (2007).
    [8] Michael Vosgueritchian et al., “Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes,” Advanced Functional Materials, Vol.22, pp.421–428 (2012).
    [9] Tae Hwan Lim et al., “Polypyrrole/MWCNT-gr-PSSA Composite for Flexible and Highly Conductive Transparent Film,” Journal of Applied Polymer Science, Vol.123, pp.388–397 (2012).
    [10] Jie Liang et al., “Flexible, Highly Transparent, and Conductive Poly(3,4-ethylenedioxythiophene)-polypropylene Composite Films of Nanofibrillar Morphology,” Chem. Mater., Vol.22, pp.4254–4262. (2010).
    [11] A. K. Geim et al., ”The Rise of Graphene,” Nature Materials, Vol.6, pp.183-191 (2007).
    [12] A. H. Castro Neto et al., “The Electronic Properties of Grapheme,” Reviews of Modern Physics, Vol.81, pp.109-161 (2009).
    [13] Jonathan K. Wassei et al., “Graphene, A Promising Transparent Conductor,” Materialstoday Vol.13, pp.52–59 (2010).
    [14] Gregory J. Exarhos et al., “Review Discovery-based Design of Transparent Conducting Oxide Films,” Thin Solid Films, Vol.515, pp.7025–7052 (2007).
    [15] H. J. Booth, “Recent Applications of Pulsed Lasers in Advanced Materials Processing,” Thin Solid Films, Vol.453-454, pp.450–457 (2004).
    [16] Shy-Wen Lai et al., “Optimization of ITO Laser Patterning in Flexible Displays using Taguchi Method,” Flexible Electronics Conference, Taiwan, pp.139-141 (2008)
    [17] Ming-Fei Chen et al., “Laser Direct Write Patterning Technique of Indium Tin Oxide Film,” Thin Solid Films, Vol.515, pp.8515–8518 (2007).
    [18] Claes G. Granqvist, “Transparent Conductors as Solar Energy Materials: A Panoramic Review,” Solar Energy Materials & Solar Cells, Vol.91, pp.1529–1598 (2007).
    [19] Tadatsugu Minami, “Transparent Conducting Oxide Semiconductors for Transparent Electrodes,” Semiconductor Science and Technology, Vol.20, pp.S35–S44, (2005).
    [20] C. May et al., “In-line Deposition of Organic Light-emitting Devices for Large Area Applications,” Thin Solid Films, Vol.516, pp.4609–4612 (2008).
    [21] H. Wulff et al., “Investigation of Plasma-deposited ITO Films by GIXR and GIXRD,” Thin Solid Films, Vol.355-356, pp.395–400 (1999).
    [22] Mustafa Ozmen et al., “Immobilization of Albumin on Indium-tin Oxide (ITO) Surface via Isocyanate Linkage,” Journal of Electroanalytical Chemistry, Vol.633, pp.228–234 (2009).
    [23] M. Eritt et al., “OLED Manufacturing for Large Area Lighting Applications,” Thin Solid Films, Vol.518, pp.3042–3045 (2010).
    [24] Dong Gun Lim et al., “A Novel Multicrystalline Silicon solar Cell using Grain Boundary Etching Treatment and Transparent Conducting Oxide,” Solar Energy Materials & Solar Cells, Vol.72, pp.571–578 (2002).
    [25] Qiang Wei et al., “Direct Patterning ITO Transparent Conductive Coatings,” Solar Energy Materials & Solar Cells, Vol.68, pp.383–390 (2001).
    [26] C. Su et al., “Preparation of ITO Thin Films by Sol-Gel Process and Their Characterizations,” Synthetic Metals, Vol.153, pp.9–12, (2005).
    [27] Rajesh Das et al., “The Role of Oxygen and Hydrogen Partial Pressures on Structural and Optical Properties of ITO Films Deposited by Reactive RF-magnetron Sputtering,” Applied Surface Science, Vol.253, pp.6068–6073 (2007).
    [28] Kyoung Seok Son et al., “The Interfacial Reaction between ITO and Silicon nitride Deposited by PECVD in Fringe Field Switching Device,” Current Applied Physics, Vol.2, pp.229–232 (2002).
    [29] J. Ederth et al., “Indium Tin Oxide Films Made from Nanoparticles: Models for the Optical and Electrical Properties,” Thin Solid Films, Vol.445, pp.199–206 (2003).
    [30] N. M. Torkaman et al., “Crystallographic Parameters and Electro-optical Constants in ITO Thin Films,” Materials Characterization, Vol.61, pp.362–370 (2010).
    [31] A. Solieman et al., “Patterning of Nanoparticulate Transparent Conductive ITO Films using UV Light Irradiation and UV Laser Beam Writing,” Applied Surface Science, Vol.256, pp.1925–1929 (2010).
    [32] G. Giusti et al., “Microstructure–Property Relationships in Thin Film ITO,” Thin Solid Films, Vol.518, pp.1140–1144 (2009).
    [33] H. Kim et al., “Transparent Conducting Sb-doped SnO2 Thin Films Grown by Pulsed-laser Deposition,” Applied Physics Letters, Vol.84, pp.218–220 (2004).
    [34] Dong-Kyoon Lee et al., “Organic Acid-based Wet Etching Behaviors of Ga-doped ZnO Films Sputter-deposited at Different Substrate Temperatures,” Thin Solid Films, Vol.518, pp.4046–4051 (2010).
    [35] D.Y. Kim et al., “Infinitely High Etch Selectivity During CH4/H2/Ar Inductively Coupled Plasma (ICP) Etching of Indium Tin Oxide (ITO) with Photoresist Mask,” Thin Solid Films, Vol.516, pp.3512–3516 (2008).
    [36] Matt Henry et al., “Rapid Laser Patterning of ITO on Glass for Next Generation Plasma Display Panel Manufacture,” SID Symposium Digest of Technical Papers, Vol.38, pp.1209–1212 (2007).
    [37] C. J. Huang et al., “The Effect of Solvent on the Etching of ITO Electrode,” Materials Chemistry and Physics, Vol.84, pp.146–150 (2004).
    [38] J. Y. Park et al., “A Study on the Etch Characteristics of ITO Thin Film using Inductively Coupled Plasmas,” Surface and Coatings Technology, Vol.131, pp.247–251 (2000).
    [39] J. J. Gandı´a et al., “Influence of TCO Dry Etching on the Properties of Amorphous-silicon Solar Cells,” Journal of Materials Processing Technology, Vol.143-144, pp.358–361 (2003).
    [40] S.H. Mohamed et al., “Properties of Indium Tin Oxide Thin Films Deposited on Polymer Substrates,” Acta Physica Polonica A, Vol.115, pp.704–708 (2009).
    [41] Dania A. Alsaid et al., “Gravure Printing of ITO Transparent Electrodes for Applications in Flexible Electronics,” Journal of Display Technology, Vol.8, pp.391–396 (2012).
    [42] Matt Henry et al., “Laser Direct Write of Active Thin-Films on Glass for Industrial Flat Panel Display Manufacture,” Proceedings of the 4th International Congress on Laser Advanced Materials Processing, Kyoto, Japan, pp.1–6 (2006).
    [43] S.M. Huang et al., “Enhancement of the light output of GaN-based light-emitting diodes using surface-textured indium-tin-oxide transparent ohmic contacts,” Displays, Vol.29, pp.254–259 (2008).
    [44] Hajime Yano et al., “Improvement of Polymer/fullerene Solar Cells by Controlling Geometry of the ITO Substrate Surface,” Solar Energy Materials & Solar Cells, Vol.93, pp.976–979 (2009).
    [45] W. Beyer et al., “Transparent Conducting Oxide Films for Thin Film Silicon Photovoltaics,” Thin Solid Films, Vol.516, pp.147–154 (2007).
    [46] Shih-Feng Tseng et al., “Laser Scribing of Indium Tin Oxide (ITO) Thin Films Deposited on Various Substrates for Touch Panels,” Applied Surface Science, Vol.257, pp.1487–1494 (2010).
    [47] Kazuhiro Noda et al., “Production of Transparent Conductive Films with Inserted SiO2 Anchor Layer, and Application to a Resistive Touch Panel,” Electronics and Communications in Japan (Part II: Electronics), Vol.84, pp.39–45 (2001).
    [48] Kwang-Ho Lee et al., “All-Solution-Processed Transparent Thin Film Transistor and Its Application to Liquid Crystals Driving,” Advanced Materials, Vol.25, pp.3209–3214 (2013).
    [49] Jaewon Jang et al., “Transparent High-Performance Thin Film Transistors from Solution-Processed SnO2/ZrO2 Gel-like Precursors,” Advanced Materials, Vol.25, pp.1042–1047 (2013).
    [50] U. Betz et al., “Thin Films Engineering of Indium Tin Oxide: Large Area Flat Panel Displays Application,” Surface & Coatings Technology, Vol.200 pp.5751–5759 (2006).
    [51] Kenji Nomura et al., “Room-temperature Fabrication of Transparent Flexible Thin-film Transistors Using Amorphous Oxide Semiconductors,” Nature, Vol.432, pp488-492 (2004).
    [52] J P Boeuf, “Plasma Display Panels: Physics, Recent Developments and Key Issues,” Journal of Physics D: Applied Physics, Vol.36, pp.R53–R79 (2003).
    [53] Kang-Hyun Yi et al., “A Simple and Highly Efficient Energy Recovery Circuit for a Plasma Display Panel (PDP),” IEEE Transactions on Industrial Electronics, Vol.55, pp782–790 (2008).
    [54] Tsuyoshi Sekitani et al., “Stretchable Active-matrix Organic Light-emitting Diode Display Using Printable Elastic Conductors,” Nature Materials Vol.8, pp.494–499 (2009).
    [55] Sang-Hee K. Park et al., “Transparent and Photo-stable ZnO Thin-film Transistors to Drive an Active Matrix Organic-Light-Emitting-Diode Display Panel,” Advanced Materials, Vol.21, pp.678–682 (2009).
    [56] Mélanie Gaillet et al., “Optical Characterizations of Complete TFT–LCD Display Devices by Phase Modulated Spectroscopic Ellipsometry,” Thin Solid Films, Vol.516, pp.170–174 (2007).
    [57] Masaru Takabatake et al., “Indium Tin Oxide Dry Etching Using HBr Gas for Thin-Film Transistor Liquid Crystal Displays,” Journal of The Electrochemical Society, Vol.142, pp2470-2473 (1995).
    [58] Frederik C. Krebs et al., “Large Area Plastic Solar Cell Modules,” Materials Science and Engineering B, Vol.138, pp.106–111 (2007).
    [59] Vladislav Jovanov et al., “Influence of Back Contact Morphology on Light Trapping and Plasmonic Effects in Microcrystalline Silicon Single Junction and Micromorph Tandem Solar Cells,” Solar Energy Materials & Solar Cells, Vol.110, pp.49–57 (2013).
    [60] Sukang Bae et al., “Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes,” Nature Nanotechnology, Vol.5, pp.574–578 (2010).
    [61] S. Ushioda, “Characterization of Surface Nanostructures by STM Light Emission Spectroscopy,” Applied Surface Science, Vol.113-114, pp.335-342 (1999).
    [62] J. B. Vukovic et al., “Scanning Probe Microscopy (Tunneling, Atomic Force, Confocal and Acoustic) In Particle Track Detectors,” Radiation Measurements, Vol. 25, pp.745-748 (1995).
    [63] Woo-Seok Cheong et al., “Process Development of ITO Source/drain Electrode for the Top-gate Indium–gallium–zinc Oxide Transparent Thin-film Transistor,” Thin Solid Films, Vol.517, pp.4094–4099 (2009).
    [64] H. K. Wickramasinghe et al., “Progress in Scanning Probe Microscopy,” Acta Materialia, Vol.48, pp.347–358 (2000).
    [65] G. Binning et al., “Atomic Force Microscope,” Physical Review Letters, Vol.56, pp.930–934 (1986).
    [66] I. A. Rauf et al., “Detection of Impurity Segregation in Zone-Confined, Polycrystalline Tin-Doped Indium Oxide Thin Films by STM and AFM,” Micron, Vol. 26, pp. 565–569 (1995).
    [67] M.J. Miles et al., “Morphological Investigation by Atomic Force Microscopy and Light Microscopy of Electropolymerised Polypyrrole Films,” Polymer, Vol.41, pp.3349–3356 (2000).
    [68] Y.Wyart et al., “Membrane Characterization by Microscopic Methods: Multiscale Structure,” Journal of Membrane Science, Vol.315, pp.82–92 (2008).
    [69] Zakia Fekkai, “Effects of Thermal Processing on Transparent Conducting Oxides (TCO) Used in Optoelectronic Devices,” Journal of Materials Science and Engineering B, Vol.3, pp.139–145 (2013).
    [70] A. Luis et al., “ITO Coated Flexible Transparent Substrates for Liquid Crystal Based Devices,” Vacuum, Vol.64, pp.475–479 (2002).
    [71] U. Durig et al., “Near-field Optical-scanning Microscopy,” Journal of Applied Physics, Vol.59, pp.3318–3327 (1986).
    [72] Eric Betzig et al., “Near-field Optics: Microscopy, Spectroscopy, and Surface Modification beyond the Diffraction Limit,” Science, Vol.257, pp.189–195 (1992).
    [73] R. Windecker et al., “Testing Micro Devices with Fringe Projection and White-light Interferometry,” Optics and Lasers in Engineering, Vol.36, pp.141–154 (2001).
    [74] Martin Koerdel et al., “Contactless Inspection of Flat-panel Displays and Detector Panels by Capacitive Coupling,” IEEE Transactions on Electron Devices, Vol.58, pp.3453–3462 (2011).
    [75] Seung-Woo Kim et al., “Thickness-profile Measurement of Transparent Thin-film Layers by White-light Scanning Interferometry,” Applied Optics, Vol.38, pp.5968–5973 (1999).
    [76] Sanjit K. Debnath et al., “Spectrally Resolved Phase-shifting Interferometry of Transparent Thin Films: Sensitivity of Thickness Measurements,” Applied Optics, Vol.45, pp.8636–8640 (2006).
    [77] F. C. Chang et al., “Nitrogen-rich Silicon Nitride Thin Films for Deep-ultraviolet Mirau Interferometry,” Optics Letters, Vol.22, pp.492–494 (1997).
    [78] Hiroshi Ishiwata et al., “A New Method of Three-dimensional Measurement by Differential Interference Contrast Microscope,” Optics Communications, Vol.260, pp.117–126 (2006).
    [79] Katsuichi Kitagawa et al., “3D Profiling of a Transparent Film using White-Light Interferometry,” SICE Annual Conference, Sapporo, pp.585–590 (2004).
    [80] Meng-Chi Li et al., “Application of White-light Scanning Interferometer on Transparent Thin-film Measurement,” Applied Optics, Vol.51, pp.8579–8586 (2012).
    [81] G. Franz et al., “Generation of Two-dimensional Surface Profiles from Differential Interference Contrast (DIC) Images,” International journal for light and Electron Optics, Vol.112, pp.363–367 (2001).
    [82] Douglas. B. Murphy, “Fundamentals of Light Microscopy and Electronic Imaging,” Wiley, ISBN:0-471-25391-X, pp.153–176 (2003).
    [83] Sheng-Kang Yu et al., “Profile Measurement of Transparent inclined Surface with Transmitted Differential Interference Contrast Shearing Interferometer,” Optics Express, Vol.20, pp.19868–19881 (2012).
    [84] M. Nonnenmacher et al., “Kelvin Probe Force Microscopy,” Applied Physics Letters, Vol.58, pp.2921–2923 (1991).
    [85] J. Olivier et al., “Stability/instability of Conductivity and Work Function Changes of ITO Thin Films, UV-irradiated in Air or Vacuum Measurements by the Four-probe Method and by Kelvin Force Microscopy,” Synthetic Metals, Vol.122, pp.87–89 (2001).
    [86] M.M. Beerbom et al., “Direct Comparison of Photoemission Spectroscopy and in situ Kelvin Probe Work Function Measurements on Indium Tin Oxide Films,” Journal of Electron Spectroscopy and Related Phenomena, Vol.152, pp.12–17 (2006).
    [87] Rafael Jaramillo et al., “Kelvin Force Microscopy Studies of Work Function of Transparent Conducting ZnO:Al Electrodes Synthesized under Varying Oxygen Pressures,” Solar Energy Materials & Solar Cells, Vol.95, pp.602–605 (2011).
    [88] Edward I. Cole Jr., “Electron and Optical Beam Testing of Integrated Circuits using CIVA, LIVA and LECIVA,” Microelectronic Engineering, Vol.31, pp.13–24 (1996).
    [89] Edward I. Cole Jr., “Global Fault Localization using Induced Voltage Alteration,” Microelectronics Reliability, Vol.41, pp.1145–1159 (2001).
    [90] M. A. Hassan, “Using Capacitance Measurements to Study Polarization in Mercuric Iodide Radiation Detectors,” Egyptian Journal of Solids, Vol.30, pp.129–136 (2007).
    [91] Fahrettin Yakuphanoglu et al., “Current–voltage and Capacitance–voltage Characteristics of the ITO/polyaniline Doped Boron Trifloride/Al Schottky Diode,” Polymers for Advanced Technologies, Vol.19, pp.1882–1886 (2008).
    [92] Kanzan Inoue et al., “Capacitance-Voltage Test using a SEM Nanoprober,” Zyvex Instruments, LLC., Technical paper, pp.1–5 (2009).
    [93] Frederic Thollon et al., “Numerical and Experimental Study of Eddy Current Probes in NDT of structures with Deep Flaws,” NDT & Ehlternational, Vol. 28, No. 2, pp. 97–102, (1995).
    [94] Ladislav Janousek et al., “Excitation with Phase Shifted Fields-enhancing Evaluation of Deep Cracks in Eddy-current Testing,” NDT & Ehlternational, Vol.38 pp.508–515 (2005).
    [95] P. Eyben, T. Janssens et al., “Scanning Spreading Resistance Microscopy (SSRM) 2D Carrier Profiling for Ultra-shallow Junction Characterization in Deep-submicron Technologies,” Materials Science and Engineering B, Vol.124-125, pp.45–53 (2005).
    [96] C.D. Bugg et al., “Scanning Capacitance Microscopy,” Journal of Physics E: Scientific Instruments, Vol.21, pp.147–151 (1998).
    [97] A. Malave´et al., “Diamond Tips and Cantilevers for the Characterization of Semiconductor Devices,” Diamond and Related Materials, Vol.8, pp.283–287 (1999).
    [98] K. Maknys et al., “Analysis of ITO Thin Layers and Interfaces in Heterojunction Solar Cells Structures by AFM, SCM and SSRM Methods,” Thin Solid Films, Vol.511-512, pp.98–102 (2006).
    [99] Hal Edwards et al., “Pn-junction Delineation in Si Devices using Scanning Capacitance Spectroscopy,” Journal of Applied Physics, Vol.87, pp.1485–1495 (2000).
    [100] S. B. Kuntze et al., “Nanoscopic Electric Potential Probing: Influence of Probe–sample Interface on Spatial Resolution,” Applied Physics Letters, Vol.84, pp.601–603 (2004).
    [101] T. Trenkler et al., “Nanopotentiometry: Local Potential Measurements in Complementary Metal–oxide–semiconductor Transistors using Atomic Force Microscopy,” Journal of Vacuum Science & Technology B, Vol.16, pp.367–372 (1998).
    [102] Malcolm G. Hall et al., “The SEM Examination of Geological Samples with a Semiconductor Back-scattered Electron Detector,” American Mineralogist, Vol.66, pp.362–368 (1981).
    [103] Jack D. Benzel, “Bug in Black and White: Imaging IC Logic Levels with Voltage Contrast”, Hewlett-Packard Journal, pp.102–106 (1995).
    [104] Junghun Chae et al., “Patterning of Indium Tin Oxide by Projection Photoablation and Lift-off Process for Fabrication of Flat-panel Displays,” Applied Physics Letters, Vol.90, pp.261102(1–3) (2007).
    [105] AR. Dinnis, “A High-resolution Time-dispersive Electron Spectrometer for Fast Voltage-contrast Measurements”, Microelectronic Engineering, Vol.31, pp.101–108 (1996).
    [106] Cher Ming Tan et al., “Feasibility Study of the Application of Voltage Contrast to Printed Circuit Board”, Microelectronics Reliability, Vol.46, pp.939–948 (2006).
    [107] Zhao-Hui Li et al., “Laser Direct Patterning of the T-shaped ITO Electrode for High-efficiency Alternative Current Plasma Display Panels,” Applied Surface Science, Vol.257, pp.776–780 (2010).
    [108] Kari Leinonen, “Investigation of Voltages and Electric Fields in Silicon Radiation Detectors using a Scanning Electron Microscope”, Nuclear Instruments and Methods in Physics Research A, Vol.555, pp.411–419 (2005).
    [109] Aravind Vijayaraghavan et al., “Imaging Defects and Junctions in Single-walled Carbon Nanotubes by Voltage-contrast Scanning Electron Microscopy”, Carbon, Vol.48, pp. 494–500 (2010).
    [110] G.H. Jayakody et al., “Imaging of Doped Si in Low and Very Low Voltage SEM: the Contrast Interpretation”, Journal of Electron Spectroscopy and Related Phenomena, Vol.143, pp.233–239 (2005).
    [111] K.A. Sierros et al., “Dry and Wet Sliding Wear of ITO-coated PET Components used in Flexible Optoelectronic Applications,” Wear, Vol.267, pp.625–631(2009).
    [112] Young Chul Kim et al., “Low Energy Micro Column for Large Field View Inspection,” Ultramicroscopy, Vol.111, pp.1645–1649 (2011).
    [113] K. Daoudi et al., “ITO Spin-coated Porous Silicon Structures,” Materials Science and Engineering B, Vol.101, pp.262–265 (2003).
    [114] Rong Zeng et al., “Review Development and Application of Integrated Optical Sensors for Intense E-Field Measurement,” Sensors, Vol.12, pp. 11406–11434 (2012).
    [115] Dong-Joon Lee et al., “Review Recent Advances in the Design of Electro-Optic Sensors for Minimally Destructive Microwave Field Probing,” Sensors, Vol.11, pp. 806–824 (2011).
    [116] K. Hidaka et al., “Electric Field Measurements in Long Gap Discharge using Pockels Device,” IEE Proceedings, Vol. 132, pp.139–146 (1985)
    [117] Kunihiko Hidaka et al., “A Method for Measuring Electric Field in Space Charge by Means of Pockels Devive,” Journal of Electrostatics, Vol.11, pp.195–211 (1982).
    [118] K. Yang et al., “Electro-optic Field Mapping System Utilizing External Gallium Arsenide Probes,” Applied Physics Letters, Vol.77, pp.486–488 (2000).
    [119] Rong Zeng et al., “Measurement of Electric Field Distribution Along Composite Insulators by Integrated Optical Electric Field Sensor,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol.15, pp.302–310 (2008).
    [120] V. M. N. Passaro et al., “Review Electromagnetic Field Photonic Sensors,” Progress in Quantum Electronics, Vol.30, pp.45–73 (2006).
    [121] Wen-Kai Kuo et al., “A Fabry–Pérot Electro-optic Sensing System using a Drive-current-tuned Wavelength Laser Diode,” Review of Scientific Instruments, Vol. 81, pp.053107(1–4) (2010).
    [122] Jeong Seok Son et al., “Detection of Amorphous-silicon Residue Generated in Thin-film Transistor Manufacturing Process using a High Spectral Response of Amorphous-silicon Layer on Green Light Source,” Current Applied Physics, Vol.6, pp.84–90 (2006).
    [123] PATENT, U.S. 5097201, “Voltage Imaging System using Electro-optics,” (1992).
    [124] PATENT, U.S. 5170127, “Capacitance Imaging System using Electro-optics,” (1992).
    [125] S. O. Kasap, “Optoelectronics and Photonics: Principles and Practices,” ISBN:0-201-61087-6, pp.1–6 (2001).
    [126] C. A. Bennett “Principle of Physical Optics,” Wiley, ISBN:978-0-470-12212-9, pp.432–463 (2008).
    [127] Guohui Li et al., “A New Method to Determine the Deuterium Content of DKDP Crystal with Thermo-gravimetric Apparatus,” Optical Materials, Vol.29, pp.220–223 (2006).
    [128] N. Zaitseva et al., “Habit Control During Rapid Growth of KDP and DKDP Crystals,” Journal of Crystal Growth, Vol.241, pp.363–373 (2002).
    [129] G. H. Sendra et al., “Numerical Model for Simulation of Dynamic Speckle Reference Patterns,” Optics Communications, Vol. 282, pp. 3693–3700 (2009).
    [130] Carl M. Lampert, “Smart Switchable Glazing for Solar Energy and Daylight Control,” Solar Energy Materials & Solar Cells, Vol.52, pp. 207–221 (1998).
    [131] Myeon-Cheon Choi et al., “Polymers for flexible displays: From material selection to device applications,” Progress in Polymer Science, Vol.33, pp.581–630 (2008).
    [132] Yordan G. Marinov et al., “Single-layered PDLC films for electrically variable laser light reflection application,” Optics and Lasers in Engineering, Vol.48, pp.1161–1165 (2010).
    [133] Iam Choon Khoo, “Nonlinear optics of liquid crystalline materials Physics,” Reports, Vol.471, pp.221–267 (2009).
    [134] L. Petti et al., “Fast Electro-optical Switching and High Contrast Ratio in Epoxy-based Polymer Dispersed Liquid Crystals,” Optics and Lasers in Engineering, Vol.39, pp.369–377 (2003).
    [135] W Korner et al., “PDLC Films for Control of Light Transmission,” Journal of Physics D: Applied Physics, Vol.27, pp.2145-2151 (1994).
    [136] Elizabeth Scherschener et al., “Polymer-dispersed Liquid-crystal Voltage Sensor,” Applied Optics, Vol.45, pp.3482–3488 (2006).
    [137] Jen-Shih Chang, et al., “Handbook of electrostatic processes,” M. Dekker, New York, ISBN:0824792548, (1995).
    [138] Robert Akins et al., “Effect of Thickness on PDLC Electro-optics,” SPIE, Liquid Crystal Materials, Devices, and Applications, Vol.1665, pp.280–289 (1992).
    [139] Si-Xue Cheng et al., “Electro-optical Properties of Polymer Dispersed Liquid Crystal Materials,” Journal of Applied Physics, Vol. 80, pp.1991–1995 (1996).
    [140] R. Yamaguchi et al., “Relationship between Film Thickness and Electro-optical Properties in Polymer Dispersed Liquid Crystal Films,” Japanese Journal of Applied Physics, Vol.33, pp.4007–4011 (1994).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE