簡易檢索 / 詳目顯示

研究生: 黃柏霖
Huang, Po-Lin
論文名稱: 移動負載於磁性編碼器之量測氣隙誤差影響
Influence of Traveling-load on Error of Measuring Gap in a Magnetic Encoder
指導教授: 張禎元
Chang, Jen-Yuan
口試委員: 宋震國
Sung, Cheng-Kuo
曹哲之
Tsao, Che-Chih
徐志豪
Xu, Zhi-Hao
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 97
中文關鍵詞: 磁性編碼器車-橋互制量測氣隙移動負載
外文關鍵詞: Magnetic Encoder, Vehicle-Bridge Interaction, Measuring Gap, Traveling Load
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究導入車-橋互制模型於封閉式磁性編碼器,透過了解車-橋互制系統的歷史演進與其優劣,進一步選擇適合的數學理論模型進行振動響應之推導。透過數學描述掃描台車與封閉式結構間的動力模型,藉由理論模型掌握關鍵影響因子得到實驗參數。同時,透過有限元素模擬找出封閉式結構的振動模態,與衝擊錘實驗所得到的模態進行比對,驗證有限元素模型的可行性與可信度,並利用模擬得到的振動模態輔助後續實驗數據的分析。本研究以加速規作為感測器,獲取掃描台車與封閉式結構的加速度響應。於實驗的結果中,掃描台車及結構的加速度響應與速度成正相關,藉由兩者加速度響應誤差的比對,發現掃描台車於結構模態三產生較大的加速度誤差響應,研究發現,此現象是由於受到離心力影響,掃描台車在低預壓力下無法忠實呈現與結構相同的加速度響應。除此之外,本研究並發現該位移誤差響應的來源主要來自50赫茲以下環境低頻振動。經實驗驗證,增加預壓力能有效降低位移誤差的響應。最後,透過實驗分析,本研究能夠精準描述預壓力與量測氣隙變化量之間的關係。


    In this research, the vehicle-bridge interaction model is applied on an enclosed magnetic encoder. Through studying evolution of vehicle-bridge interaction system including its advantages and disadvantages between different theoretical models, the most suitable mathematical model is selected to derive the vibration responses and dynamic behavior between scanning head and enclosed structure by math. Therefore, the experimental parameters can be identified by figuring out the main factors from the theoretical model. Furthermore, vibration modes of the enclosed structure can be obtained by FEM simulations. In order to verify the feasibility and credibility of the finite element model, the modes from simulation are compared with the modes obtained from impact hammer experiment. After the verification, it is validated that the FEM simulation can assist analyzing the experiment data subsequently. In the experiment, the accelerometers are placed on the structure to capture the acceleration responses of scanning head and enclosed structure. From experimental results, the acceleration responses of the scanning head and the structure are positively correlated to velocity. By comparing the acceleration error response of the two, it is found that the acceleration error response is the largest when third mode is excited. Due to lower preload and centrifugal force, the scanning head can’t faithfully present the structure’s acceleration response. From displacement error response, the source of error is found to be caused mainly from environmental vibrations at low frequency range which is under 50 Hz. Besides, it is proved that increasing the preload can effectively reduce the response of displacement error. In the summary, this study proposes a method to accurately predict the relationship between preload and the dynamic variation of measuring gap.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1研究背景 1 1.2研究動機 2 1.3文獻回顧 3 1.3.1車-橋互制系統演進歷程 3 1.4研究方法 10 第二章 理論背景 11 2.1編碼器簡介 11 2.1.1封閉式磁性尺結構組成及應用 11 2.1.2磁感應原理 12 2.2振動學 13 2.2.1簡諧振盪動態系統 14 2.2.2樑之自由振動 16 2.3樑變形理論 19 2.3.1尤拉樑理論 20 2.3.2 Timoshenko樑理論 21 2.4有限變形之非線性理論 22 2.4.1 Total Lagrangian Formulation 23 2.4.2 Updated Lagrangian Formulation 25 2.4.3平衡方程線性化 27 第三章 車-橋互制系統動力分析方法 29 3.1移動集中載重通過簡支梁 29 3.2移動質量通過簡支梁 32 3.3車-橋互制理論模型分析封閉式磁性定位系統 34 第四章 結構振動實驗與模擬 40 4.1有限元素模型 40 4.1.1實驗方法 42 4.2模態分析 45 4.3實驗模態驗證 47 4.3.1實驗規劃 47 4.3.2實驗平台架設 47 4.3.3實驗結果 50 第五章 移動負載實驗 54 5.1實驗架設 54 5.2實驗方法 56 5.3實驗結果 60 第六章 結論與未來工作 92 6.1結論 92 6.2未來工作 93 參考文獻 95

    [1] G. B. C. a. t. i. i. t. a. o. i. t. r. structures, Report of the Commissioners Appointed to Inquire Into the Application of Iron to Railway Structures. William Clowes and sons, 1849.
    [2] S. Timoshenko, "Forced vibration of prismatic bars," Izvestiya Kievskogo politekhnicheskogo instituta, vol. 59, pp. 163-203, 1908.
    [3] J. Prescott, "A Mathematical Treatise on Vibrations in Railway Bridges. By CE Inglis. Pp. xxv, 203, 21s. 1934.(Cambridge)," The Mathematical Gazette, vol. 18, no. 231, pp. 329-330, 1934.
    [4] J. M. Biggs and J. M. Biggs, Introduction to structural dynamics. McGraw-Hill College, 1964.
    [5] L. Frýba, "Vibration of solids and structures under moving loads. Academia," ed: Praha, Nordhoff International Publishing, Groningen, 1972.
    [6] M.-K. Song, H.-C. Noh, and C.-K. Choi, "A new three-dimensional finite element analysis model of high-speed train–bridge interactions," Engineering Structures, vol. 25, no. 13, pp. 1611-1626, 2003/11/01/ 2003.
    [7] S.-H. Ju and H.-T. Lin, "A finite element model of vehicle–bridge interaction considering braking and acceleration," Journal of Sound and Vibration, vol. 303, no. 1, pp. 46-57, 2007/06/05/ 2007.
    [8] L. Kwasniewski, H. Li, J. Wekezer, and J. Malachowski, "Finite element analysis of vehicle–bridge interaction," Finite Elements in Analysis and Design, vol. 42, no. 11, pp. 950-959, 2006.
    [9] L. Frýba, Dynamics of railway bridges. Thomas Telford Publishing, 1996.
    [10] P. Van Bogaert, "Dynamic response of trains crossing large span double-track bridges," Journal of Constructional Steel Research, vol. 24, no. 1, pp. 57-74, 1993/01/01/ 1993.
    [11] M. F. Green, D. Cebon, and D. J. Cole, "Effects of Vehicle Suspension Design on Dynamics of Highway Bridges," Journal of Structural Engineering, vol. 121, no. 2, pp. 272-282, 1995.
    [12] 莊志明 and 劉俊秀, "彈性支承橋梁於移動載重作用下之動態互制分析," 1999.
    [13] J. Maeck, A. Teughels, and G. De Roeck, "Experimental and numerical modal analysis of a concrete high speed train railway bridge," in MCCI'2000 International Symposium on Modern Concrete Composites & Infrastructures, Beijing, China, 2000.
    [14] N. Zhang, H. Xia, and W. Guo, "Vehicle–bridge interaction analysis under high-speed trains," Journal of Sound and Vibration, vol. 309, no. 3-5, pp. 407-425, 2008.
    [15] Y.-B. Yang and B.-H. Lin, "Vehicle-bridge interaction analysis by dynamic condensation method," Journal of Structural Engineering, vol. 121, no. 11, pp. 1636-1643, 1995.
    [16] Y.-B. Yang and J.-D. Yau, "Vehicle-bridge interaction element for dynamic analysis," Journal of Structural Engineering, vol. 123, no. 11, pp. 1512-1518, 1997.
    [17] Y.-B. Yang, J. Yau, Z. Yao, and Y. Wu, Vehicle-bridge interaction dynamics: with applications to high-speed railways. World Scientific, 2004.
    [18] Y. Yang and C. Lin, "Vehicle–bridge interaction dynamics and potential applications," Journal of sound and vibration, vol. 284, no. 1-2, pp. 205-226, 2005.
    [19] 吳峰賓, "考慮路面粗糙度與車輛非線性勁度於橋頻間接量測法之模擬分析," 臺灣大學土木工程學研究所學位論文, pp. 1-81, 2010.
    [20] 陳柏豪 and 楊子儀, "以具雙質量車輛模型識別橋梁頻率與頻譜分析," 2017.
    [21] J. Humar and A. Kashif, "Dynamic response of bridges under travelling loads," Canadian Journal of Civil Engineering, vol. 20, no. 2, pp. 287-298, 1993.
    [22] J. Humar and A. Kashif, "Dynamic Response of Bridges Under Traffic Loads," in Computing in Civil and Building Engineering, 1993, pp. 477-484: ASCE.
    [23] 李唯鈞, "以 EMD 識別橋梁基本振動頻率並探討移動車輛阻尼, 質量, 速度之影響," 交通大學土木工程系所學位論文, pp. 1-124, 2016.
    [24] S. Timoshenko and J. Gere, "Theory of elastic stability. New York: McGraw-Hill, 1961," 1961.
    [25] S. P. Timoshenko, "X. On the transverse vibrations of bars of uniform cross-section," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 43, no. 253, pp. 125-131, 1922.
    [26] https://en.wikipedia.org/wiki/Timoshenko_beam_theory

    QR CODE