研究生: |
馬彬立 Billy Malherbe |
---|---|
論文名稱: |
將雙重機器學習應用於結構方程模型 Applying Bootstrap and Double Machine Learning to Structural Equation Modeling |
指導教授: |
雷松亞
Ray, Soumya |
口試委員: |
Yoo, Jaewon
Yoo, Jaewon Danks, Nicholas Danks, Nicholas |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 國際專業管理碩士班 International Master of Business Administration(IMBA) |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 32 |
中文關鍵詞: | 雙重機器學習 、自舉 、結構方程模型 |
外文關鍵詞: | Double Machine Learning, SEM-PLS, Bootstrapping |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
N/A
Partial Least Square - Structural Equation Modeling (PLS-SEM) has become a quasi-standard technique in management research and other fields. We are investigating techniques found in regression that could be replied to PLS-SEM. We are taking the result of the non-parametric bootstraps to compare with the other type of bootstraps, residual and wild bootstraps. We also call the resulting set of methods double or debiased ML (DML), which is a method that can solve the problem of regularization bias and overfitting. We will explore what these techniques are and implement them for PLS-SEM
o Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters.
o Shah, R., Goldstein, S. M., Unger, B. T., & Henry, T. D. (2008). Explaining anomalous high performance in a health care supply chain. Decision Sciences, 39(4), 759-789.
o Beebe, D. W., and Gozal, D. (2002). Obstructive sleep apnea and the prefrontal cortex: towards a comprehensive model linking nocturnal upper airway obstruction to daytime cognitive and behavioral deficits. J. Sleep
o Lohmöller,J.B. and Wold, H. (1980), "Three-mode path models with latent variables and partial least squares (PLS) parameter estimation", paper presented at European Meeting of the Psychometric Society, Groningen, The Netherlands.
o Ray, S., Ow, T., & Kim, S. S. (2011). Security assurance: How online service providers can influence security control perceptions and gain trust. Decision Sciences, 42(2), 391-412.
o Hair, J. F., Hult, J. G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM).
o Beran, R. (1986). Discussion of Wu, CFJ: Jackknife, bootstrap, and other resampling methods in regression analysis (with discussion). Ann. Statist, 14, 1295-1298.
o K. G. Jöreskog, H. O. A. W. (1982). The ML and PLS techniques for modeling with latent variables: historical and comparative aspects. In Systems Under Indirect Observation (pp. 263–270).
o Davison, A., and D. Hinkley. 1997. Bootstrap Methods and Their Application. Cambridge: Cambridge University Press.
o Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans..
o Barclay, L. M., & Lloyd, B. (1996). The misery of motherhood: alternative approaches to maternal distress. Midwifery, 12(3), 136-139.
o Ray, S., Danks, N., & Calero Valdez, A. (2021). SEMinR: Domain-specific language for building, estimating, and visualizing structural equation models in R. Estimating, and Visualizing Structural Equation Models in R (August 6, 2021)
o Jeong, J., & Maddala, G. S. (1993). 21 A perspective on application of bootstrap methods in econometrics.
o MacKinnon, J. G. (2006). Bootstrap methods in econometrics. Economic Record, 82, S2-S18.
o Sharma, J. L., Mougoue, M., & Kamath, R. (1996). Heteroscedasticity in stock market indicator return data: volume versus GARCH effects. Applied Financial Economics, 6(4), 337-342.
o Skoufias, E., & Vinha, K. (2021). Child stature, maternal education, and early childhood development in Nigeria. PloS one, 16(12), e0260937.