研究生: |
許令揚 Hsu, Ling-Yang |
---|---|
論文名稱: |
雙三配位銥金屬錯合物之合成暨有機發光二極體與生物影像的應用 Synthesis of Bis-tridentate Iridium (III) Complexes and Their Applications in Organic Light-Emitting Diodes and Bio-imaging. |
指導教授: |
季昀
Chi, Yun |
口試委員: |
陳建添
Chen, Chien-Tien 李紫原 Lee, Chi-Young 衛子健 Wei, Tzu-Chien |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 207 |
中文關鍵詞: | 銥金屬 、雙三配位 、有機發光二極體 、生物影像 |
外文關鍵詞: | Iridium, bis-tridentate, OLEDs, bio-imaging |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文第一系列錯合物主要以 (C^N^N) 負二價配位基為發光團配位基 (chromophore),搭配不同類型 [(C^N^N)、(C^N^C) 以及 (C^C^C)] 的負一價輔助配位基 (ancillary ligand),合成出七個雙三牙配位銥金屬錯合物,其中包含中性及陽離子性的錯合物,藉由光物理性質及理論計算的結果,探討當負一價配位基用不同原子進行配位時,金屬與配位基間作用力的改變。由於中性錯合物結構剛性強、中心金屬與配位基交互作用力強,具有傑出的磷光量子效率與高的光穩定性,挑選天藍光錯合物 1.3 及 1.4 進行 OLEDs 元件製作,最大外部量子效率 (EQE) 可分別達 16.7% 及 14.6%。
第二系列錯合物為第一系列的延伸,於 (C^N^C) 配位基上利用 2,4-bis(trifluoromethyl)phenyl 取代 2,4-difluorophenyl,並搭配不同的 (C^N^N) 配位基,合成出光色與第一系列錯合物截然不同的銥金屬磷光材料,進一步拓展了雙三牙配位銥金屬錯合物在 OLEDs 領域的發展性。
第三系列的錯合物中,我們利用合成的方法製備出具水溶性的雙三牙配位銥金屬錯合物,首次將 3+3 系統成功應用於生物細胞顯像 (bio-imaging) 領域,用來作為生物體內氧氣的偵測 (oxygen sensing)。利用不同發光配位基及取代基的引入,衍伸出水溶性與生物毒性不盡相同的綠光及紅光發光材料,透過對光物理性質與分子特性的了解,為雙三牙配位銥金屬錯合物在生物細胞顯像領域的發展,開創了一條全新的道路。
To the first series of complexes in this thesis, we have synthesized seven bis-tridentate iridium complexes bearing same chromophoric chelate (C^N^N) and with different ancillary chelates (C^N^N, C^N^C, and C^C^C), including neutral and cationic complexes. Based on the results of photophysical properties and theoretical calculations, the change of interaction between metal and the ligand was discussed when the monoanionic chelate was coordinated to the metal by using different atoms. The structural rigidity and stronger metal-ligand interaction play the key factor to account for excellent phosphorescence quantum yields and high photostability for the neutral complexes. Among them, we chose sky-blue complexes 1.3 and 1.4 for OLEDs fabrication, giving the external quantum efficiency exceeding 16.7% and 14.6%, respectively.
The second series of complexes was an extension from the first series. By using 2,4-bis(trifluoromethyl)phenyl instead of 2,4-difluorophenyl in the (C^N^C) chelates, and with different (C^N^N) chelates, we synthesized a series of iridium complexes with different emission color compared to the first series of complexes, further expanding the development of bis-tridentate iridium complexes in the field of OLEDs.
In the third series of complexes, we synthesized a new type of bis-tridentate iridium complexes with water-soluble characteristics. For the first time, the 3+3 system was successfully applied to the field of bio-imaging for oxygen sensing in living organisms. By using different chromophoric chelates or substituents, we have developed green and red emitters with different water solubility and biological toxicity. Through the understanding of photophysical properties and molecular properties in this series of complexes, we have opened up a new path for the development of bis-tridentate iridium complexes in the field of bio-imaging.
1. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151-154.
2. S. Welter, K. Brunner, J. W. Hofstraat and L. De Cola, Nature, 2003, 421, 54-57.
3. J. C. Koziar and D. O. Cowan, Acc. Chem. Res., 1978, 11, 334-341.
4. M. Pope, H. P. Kallmann and P. Magnante, J. Chem. Phys., 1963, 38, 2042-2043.
5. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913-915.
6. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 1990, 347, 539-541.
7. M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature, 2000, 403, 750-753.
8. C. Adachi, M. A. Baldo and S. R. Forrest, J. Appl. Phys., 2000, 87, 8049-8055.
9. T. Főrster, Discuss. Faraday Soc., 1959, 27, 7-17.
10. D. L. Dexter, J. Chem. Phys., 1953, 21, 836-850.
11. H. Yersin, Transition Metal and Rare Earth Compounds, 2004, 1-26.
12. X. Li, X. Su, Z. Shi, X. Cheng, S. Liu and Q. Zhao, Sens. Actuator B-Chem., 2014, 201, 343-350.
13. L. A. Schaper, S. J. Hock, W. A. Herrmann and F. E. Kuhn, Angew. Chem. Int. Ed., 2013, 52, 270-289.
14. H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke and Y. Urano, Chem. Rev., 2010, 110, 2620-2640.
15. A. Frei, R. Rubbiani, S. Tubafard, O. Blacque, P. Anstaett, A. Felgenträger, T. Maisch, L. Spiccia and G. Gasser, J. Med. Chem., 2014, 57, 7280-7292.
16. H. Huang, B. Yu, P. Zhang, J. Huang, Y. Chen, G. Gasser, L. Ji and H. Chao, Angew. Chem. Int. Ed., 2015, 54, 14049-14052.
17. A. Naik, R. Rubbiani, G. Gasser and B. Spingler, Angew. Chem. Int. Ed., 2014, 53, 6938-6941.
18. S. P.-Y. Li, H.-W. Liu, K. Y. Zhang and K. K.-W. Lo, Inorg. Chem., 2010, 16, 8329-8339.
19. Q. Zhao, M. Yu, L. Shi, S. Liu, C. Li, M. Shi, Z. Zhou, C. Huang and F. Li, Organometallics, 2010, 29, 1085-1091.
20. Q. Zhao, C. Huang and F. Li, Chem. Soc. Rev., 2011, 40, 2508-2524.
21. V. Fernandez-Moreira, F. L. Thorp-Greenwood and M. P. Coogan, Chem. Commun., 2010, 46, 186-202.
22. G. L. Semenza, Cell, 2012, 148, 399-408.
23. P. Vaupel and A. Mayer, Cancer Metastasis Rev., 2007, 26, 225-239.
24. E. C. Finger and A. J. Giaccia, Cancer Metastasis Rev., 2010, 29, 285-293.
25. N. Hasebe, Y. Deguchi, S. Murayama, T. Yoshihara, H. Horiuchi, T. Okutsu and S. Tobita, J. Photochem. Photobiol. A, 2016, 324, 134-144.
26. K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, Nature, 1998, 395, 677-680.
27. D. F. O’Brien, M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 1999, 74, 442-444.
28. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4-6.
29. X. Yang, X. Xu and G. Zhou, J. Mater. Chem. C, 2015, 3, 913-944.
30. H. Fu, Y.-M. Cheng, P.-T. Chou and Y. Chi, Mater. Today, 2011, 14, 472-479.
31. P.-T. Chou, Y. Chi, M.-W. Chung and C.-C. Lin, Coord. Chem. Rev., 2011, 255, 2653-2665.
32. E. Baranoff and B. F. E. Curchod, Dalton Trans., 2015, 44, 8318-8329.
33. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082-2084.
34. S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki and F. Sato, Appl. Phys. Lett., 2003, 83, 569-571.
35. J. Li, P. I. Djurovich, B. D. Alleyne, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, Polyhedron, 2004, 23, 419-428.
36. R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li and M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818-3820.
37. S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu and C. H. Chen, Adv. Mater., 2005, 17, 285-289.
38. C. H. Yang, Y. M. Cheng, Y. Chi, C. J. Hsu, F. C. Fang, K. T. Wong, P. T. Chou, C. H. Chang, M. H. Tsai and C. C. Wu, Angew. Chem. Int. Ed., 2007, 46, 2418-2421.
39. C.-H. Chang, Z.-J. Wu, C.-H. Chiu, Y.-H. Liang, Y.-S. Tsai, J.-L. Liao, Y. Chi, H.-Y. Hsieh, T.-Y. Kuo, G.-H. Lee, H.-A. Pan, P.-T. Chou, J.-S. Lin and M.-R. Tseng, ACS Appl. Mater. Interfaces, 2013, 5, 7341-7351.
40. J. Lee, H. Oh, J. Kim, K.-M. Park, K. S. Yook, J. Y. Lee and Y. Kang, J. Mater. Chem. C, 2014, 2, 6040-6047.
41. T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes and S. R. Forrest, Inorg. Chem., 2005, 44, 7992-8003.
42. C. F. Chang, Y. M. Cheng, Y. Chi, Y. C. Chiu, C. C. Lin, G. H. Lee, P. T. Chou, C. C. Chen, C. H. Chang and C. C. Wu, Angew. Chem. Int. Ed., 2008, 47, 4542-4545.
43. J. Lee, H. F. Chen, T. Batagoda, C. Coburn, P. I. Djurovich, M. E. Thompson and S. R. Forrest, Nat. Mater., 2016, 15, 92-98.
44. A. J. Wilkinson, A. E. Goeta, C. E. Foster and J. A. G. Williams, Inorg. Chem., 2004, 43, 6513-6515.
45. A. J. Wilkinson, H. Puschmann, J. A. K. Howard, C. E. Foster and J. A. G. Williams, Inorg. Chem., 2006, 45, 8685-8699.
46. B. Tong, H.-Y. Ku, I. J. Chen, Y. Chi, H.-C. Kao, C.-C. Yeh, C.-H. Chang, S.-H. Liu, G.-H. Lee and P.-T. Chou, J. Mater. Chem. C, 2015, 3, 3460-3471.
47. J. Lin, N.-Y. Chau, J.-L. Liao, W.-Y. Wong, C.-Y. Lu, Z.-T. Sie, C.-H. Chang, M. A. Fox, P. J. Low, G.-H. Lee and Y. Chi, Organometallics, 2016, 35, 1813-1824.
48. C. Y. Kuei, W. L. Tsai, B. Tong, M. Jiao, W. K. Lee, Y. Chi, C. C. Wu, S. H. Liu, G. H. Lee and P. T. Chou, Adv. Mater., 2016, 28, 2795-2800.
49. J. Lin, Y. Wang, P. Gnanasekaran, Y.-C. Chiang, C.-C. Yang, C.-H. Chang, S.-H. Liu, G.-H. Lee, P.-T. Chou, Y. Chi and S.-W. Liu, Adv. Funct. Mater., 2017, 27.
50. Y. You and W. Nam, Chem. Soc. Rev., 2012, 41, 7061-7084.
51. O. S. Wenger, Chem. Rev., 2013, 113, 3686-3733.
52. K.-C. Chang, S.-S. Sun, M. O. Odago and A. J. Lees, Coord. Chem. Rev., 2015, 284, 111-123.
53. H.-C. Su, H.-F. Chen, F.-C. Fang, C.-C. Liu, C.-C. Wu, K.-T. Wong, Y.-H. Liu and S.-M. Peng, J. Am. Chem. Soc., 2008, 130, 3413-3419.
54. S. Tang, J. Pan, H. A. Buchholz and L. Edman, J. Am. Chem. Soc., 2013, 135, 3647-3652.
55. M. Yu, Q. Zhao, L. Shi, F. Li, Z. Zhou, H. Yang, T. Yi and C. Huang, Chem. Commun., 2008, 2115-2117.
56. K. K.-W. Lo, P.-K. Lee and J. S.-Y. Lau, Organometallics, 2008, 27, 2998-3006.
57. K. Y. Zhang, H.-W. Liu, T. T.-H. Fong, X.-G. Chen and K. K.-W. Lo, Inorg. Chem., 2010, 49, 5432-5443.
58. S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita and T. Takeuchi, Cancer Res., 2010, 70, 4490-4498.
59. T. Yoshihara, M. Hosaka, M. Terata, K. Ichikawa, S. Murayama, A. Tanaka, M. Mori, H. Itabashi, T. Takeuchi and S. Tobita, Anal. Chem., 2015, 87, 2710-2717.
60. A. T. Hoye, J. E. Davoren, P. Wipf, M. P. Fink and V. E. Kagan, Acc. Chem. Res., 2008, 41, 87-97.
61. L. F. Yousif, K. M. Stewart and S. O. Kelley, ChemBioChem, 2009, 10, 1939-1950.
62. L. F. Yousif, K. M. Stewart, K. L. Horton and S. O. Kelley, ChemBioChem, 2009, 10, 2081-2088.
63. T. Murase, T. Yoshihara and S. Tobita, Chem. Lett., 2012, 41, 262-263.
64. Z. Guo, S. Park, J. Yoon and I. Shin, Chem. Soc. Rev., 2014, 43, 16-29.
65. G. Zhang, H. Zhang, Y. Gao, R. Tao, L. Xin, J. Yi, F. Li, W. Liu and J. Qiao, Organometallics, 2014, 33, 61-68.
66. J. Qiao, L. Duan, L. Tang, L. He, L. Wang and Y. Qiu, J. Mater. Chem., 2009, 19, 6573-6580.
67. T. Yoshihara, S. Murayama, T. Masuda, T. Kikuchi, K. Yoshida, M. Hosaka and S. Tobita, J. Photochem. Photobiol. A: Chem., 2015, 299, 172-182.
68. Y. Liu, P. Zhang, X. Fang, G. Wu, S. Chen, Z. Zhang, H. Chao, W. Tan and L. Xu, Dalton Trans, 2017, 46, 4777-4785.
69. S. Schmidbauer, A. Hohenleutner and B. Konig, Beilstein J. Org. Chem., 2013, 9, 2088-2096.
70. W.-J. Hu, L.-Q. Liu, M.-L. Ma, X.-L. Zhao, Y. A. Liu, X.-Q. Mi, B. Jiang and K. Wen, Tetrahedron, 2013, 69, 3934-3941.
71. V. C. Vargas, R. J. Rubio, T. K. Hollis and M. E. Salcido, Org. Lett., 2003, 5, 4847-4849.
72. G. H. Gunasekar, K. Park, V. Ganesan, K. Lee, N.-K. Kim, K.-D. Jung and S. Yoon, Chem. Mater., 2017, 29, 6740-6748.
73. M. Peters and R. Breinbauer, Tetrahedron Lett., 2010, 51, 6622-6625.
74. C.-C. Chou, P.-H. Chen, F.-C. Hu, Y. Chi, S.-T. Ho, J.-J. Kai, S.-H. Liu and P.-T. Chou, J. Mater. Chem. A, 2014, 2, 5418-5426.
75. A. V. Malkov, M.-M. Westwater, A. Gutnov, P. Ramírez-López, F. Friscourt, A. Kadlčíková, J. Hodačová, Z. Rankovic, M. Kotora and P. Kočovský, Tetrahedron, 2008, 64, 11335-11348.
76. V. Montoya, J. Pons, V. Branchadell and J. Ros, Tetrahedron, 2005, 61, 12377-12385.
77. H. Tajuddin, P. Harrisson, B. Bitterlich, J. C. Collings, N. Sim, A. S. Batsanov, M. S. Cheung, S. Kawamorita, A. C. Maxwell, L. Shukla, J. Morris, Z. Lin, T. B. Marder and P. G. Steel, Chem. Sci., 2012, 3, 3505-3515.
78. T. J. Sorensen, B. W. Laursen, R. Luchowski, T. Shtoyko, I. Akopova, Z. Gryczynski and I. Gryczynski, Chem. Phys. Lett., 2009, 476, 46-50.
79. J.-L. Liao, Y. Chi, Y.-D. Su, H.-X. Huang, C.-H. Chang, S.-H. Liu, G.-H. Lee and P.-T. Chou, J. Mater. Chem. C, 2014, 2, 6269-6282.
80. K. Rurack and M. Spieles, Anal. Chem., 2011, 83, 1232-1242.
81. Y. Unger, D. Meyer, O. Molt, C. Schildknecht, I. Münster, G. Wagenblast and T. Strassner, Angew. Chem. Int. Ed., 2010, 49, 10214-10216.
82. R. Visbal and M. C. Gimeno, Chem. Soc. Rev., 2014, 43, 3551-3574.
83. A. F. Henwood, A. K. Bansal, D. B. Cordes, A. M. Z. Slawin, I. D. W. Samuel and E. Zysman-Colman, J. Mater. Chem. C, 2016, 4, 3726-3737.
84. J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau and M. E. Thompson, Inorg. Chem., 2002, 41, 3055-3066.
85. L. Yang, F. Okuda, K. Kobayashi, K. Nozaki, Y. Tanabe, Y. Ishii and M.-a. Haga, Inorg. Chem., 2008, 47, 7154-7165.
86. D. Ma, Y. Qiu and L. Duan, Adv. Funct. Mater., 2016, 26, 3438-3445.
87. V. Sivasubramaniam, F. Brodkorb, S. Hanning, H. P. Loebl, V. van Elsbergen, H. Boerner, U. Scherf and M. Kreyenschmidt, J. Fluorine Chem., 2009, 130, 640-649.
88. W. Song, H. L. Lee and J. Y. Lee, J. Mater. Chem. C, 2017, 5, 5923-5929.
89. S.-J. Su, H. Sasabe, T. Takeda and J. Kido, Chem. Mater., 2008, 20, 1691-1693.
90. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon and M. E. Thompson, Appl. Phys. Lett., 2003, 82, 2422-2424.
91. J. Li, S.-C. Dong, A. Opitz, L.-S. Liao and N. Koch, J. Mater. Chem. C, 2017, 5, 6989-6996.
92. M.-H. Tsai, H.-W. Lin, H.-C. Su, T.-H. Ke, C.-c. Wu, F.-C. Fang, Y.-L. Liao, K.-T. Wong and C.-I. Wu, Adv. Mater., 2006, 18, 1216-1220.
93. H. Xu, L.-H. Wang, X.-H. Zhu, K. Yin, G.-Y. Zhong, X.-Y. Hou and W. Huang, J. Phys. Chem. B, 2006, 110, 3023-3029.
94. K. Goushi, R. Kwong, J. J. Brown, H. Sasabe and C. Adachi, J. Appl. Phys., 2004, 95, 7798-7802.
95. S.-J. Su, T. Chiba, T. Takeda and J. Kido, Adv. Mater., 2008, 20, 2125-2130.
96. C.-H. Chang, M.-K. Hsu, S.-W. Wu, M.-H. Chen, H.-H. Lin, C.-S. Li, T.-W. Pi, H.-H. Chang and N.-P. Chen, PCCP, 2015, 17, 13123-13128.
97. C.-H. Chang, C.-C. Chen, C.-C. Wu, C.-H. Yang and Y. Chi, Org. Electron., 2009, 10, 1364-1371.
98. J.-L. Liao, Y. Chi, Z.-T. Sie, C.-H. Ku, C.-H. Chang, M. A. Fox, P. J. Low, M.-R. Tseng and G.-H. Lee, Inorg. Chem., 2015, 54, 10811-10821.
99. H.-H. Kuo, L.-Y. Hsu, J.-Y. Tso, W.-Y. Hung, S.-H. Liu, P.-T. Chou, K.-T. Wong, Z.-L. Zhu, C.-S. Lee, A. K. Y. Jen and Y. Chi, J. Mater. Chem. C, 2018, 6, 10486-10496.
100. H. Xiang, J. Cheng, X. Ma, X. Zhou and J. J. Chruma, Chem. Soc. Rev., 2013, 42, 6128-6185.
101. T. Morimoto and O. Ishitani, Acc. Chem. Res., 2017, 50, 2673-2683.
102. D. Maiti and S. L. Buchwald, J. Org. Chem., 2010, 75, 1791-1794.
103. F.-C. Hu, S.-W. Wang, M. Planells, N. Robertson, H. Padhy, B.-S. Du, Y. Chi, P.-F. Yang, H.-W. Lin, G.-H. Lee and P.-T. Chou, ChemSusChem, 2013, 6, 1366-1375.
104. H. H. Kuo, Y. T. Chen, L. R. Devereux, C. C. Wu, M. A. Fox, C. Y. Kuei, Y. Chi and G. H. Lee, Adv. Mater., 2017, 29, 1702464.
105. H. H. Kuo, Z. L. Zhu, C. S. Lee, Y. K. Chen, S. H. Liu, P. T. Chou, A. K. Jen and Y. Chi, Adv. Sci., 2018, 5, 1800846.
106. A. R. Chianese, A. Mo, N. L. Lampland, R. L. Swartz and P. T. Bremer, Organometallics, 2010, 29, 3019-3026.
107. M. Raynal, R. Pattacini, C. S. J. Cazin, C. Vallée, H. Olivier-Bourbigou and P. Braunstein, Organometallics, 2009, 28, 4028-4047.
108. L. P. Press, A. J. Kosanovich, B. J. McCulloch and O. V. Ozerov, J. Am. Chem. Soc., 2016, 138, 9487-9497.