簡易檢索 / 詳目顯示

研究生: 林永振
Yung-Chen Lin
論文名稱: C-軸優選氮化鋁薄膜成長及其體聲波元件(FBARs)之研究
Synthesize Highly-textured AlN Thin Film and Study on Its Application to Thin Film Bulk Acoustic Wave Resonators
指導教授: 戴念華
Nyan-Hwa Tai
林諭男
I-Nan Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 86
中文關鍵詞: 聲波元件氮化鋁
外文關鍵詞: FBARs, acoustic, AlN
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高頻聲波元件(FBAR)是未來無線通訊領域中很重要的技術,由於體聲波元件的開發使的濾波器及共振器的尺寸大幅的下降,在厚度上也進入了薄膜的尺寸,除此之外,體聲波元件有非常好的聲波特性,如:在高頻損耗低、整合性佳、功率忍受度高…等特性,所以這是一個非常有研究潛力的技術。
    高頻聲波元件的開發有兩大重點,第一點是結構與線路設計;第二點是壓電材料,實驗中結構設計利用背向蝕刻矽晶的懸空結構來減少元件的損耗,導波的結構利用兩端(two port)的共平面結構,將聲波耦合到共振器元件。材料選用氮化鋁壓電材料,利用射頻濺鍍法低溫(不加熱)成長優選的氮化鋁薄膜,利用鋁靶提供鋁原子,在腔體中通入氮氣及氬氣,氮氣會在電漿中分解提供氮原子來源。由於只有C-軸優選的氮化鋁薄膜擁有壓電的特性,製程中在較高的氮氣比例及較短的基板到靶材距離可以成長出C-軸優選的氮化鋁薄膜,不論在任何基板上。因為聲波元件結構上的考量,必需將氮化鋁薄膜成長在金屬電極上,平常在低溫的環境下很難在金屬上得到好的C-軸優選及結晶性,實驗中選用一些金屬材料可成長為原子間距接近氮化鋁(002)平面的材料,藉著原子間距接近使氮化鋁易堆積成最密堆積面,進而改善薄膜結晶性。


    第一章 簡介……………………………………………… 1 第二章 文獻回顧………………………………………… 4 2-1 氮化鋁的結構與特性…………………………………… 4 2-1-1氮化鋁的結構……………………………………. 4 2-1-2氮化鋁的特性……………………………………. 5 2-2 氮化鋁薄膜的成長……………………………………… 6 2-2-1物理氣相沉積……………………………………. 7 2-2-2化學氣相沉積……………………………………. 8 2-3 高頻聲波元件的發展…………………………………… 9 2-3-1 高頻聲波元件的基本結構……………………… 10 2-3-2 高頻聲波元件的基本原理……………………… 12 2-3-2.1 壓電效應………………………………… 12 2-3-2.2 聲波的基本特性………………………… 13 2-3-2.3 One-Dimensional Mason’s Model…… 17 2-3-2.4 共振器頻率響應……………………………… 18 2-3-2.5 BUTTERWORTH-VAN DYKE Equivalent Circuit 20 第三章 實驗製程………………………………………… 22 3-1 氮化鋁薄膜製程簡介…………………………………… 22 3-1-1 鍍膜設備………………………………………… 22 3-1-2 鍍膜步驟………………………………………… 24 3-2 體聲波元件的製程……………………………………… 25 3-2-1 元件製程步驟…………………………………… 26 3-2-2元件完成圖(OM)………………………………… 31 第四章 結果與討論…………………………………… 36 4-1 氮化鋁薄膜在白金及Si(100)基板成長情形………… 36 4-2 可幫助氮化鋁(002)優選的電極材料或緩衝層……… 43 4-3 金屬電極的結構特性………………………………… 46 4-4 氮化鈦緩衝層的成長………………………………… 49 4-5 成長氮化鋁在金屬電極上…………………………… 52 4-6 體聲波元件的電性分析……………………………… 58 4-6-1 元件頻率響應的模擬………………………… 58 4-6-2 FBAR元件的電性分析………………………… 68 4-6-3 有效機電耦合係數(kt2)的計算……………… 75 4-6-4 利用BVD Model探討電極面積影響…………… 76 第五章 結論……………………………………………… 79 參考文獻…………………………………………………… 82 附錄一……………………………………………………… 85 附錄二……………………………………………………… 86

    References:
    [1] R. C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, J. D. Larson III, “ Thin film bulk wave acoustic resonators (FBAR) for wireless applications”, Ultrasonics Symposium, 2001 IEEE ,Vol. 1, 2001.
    [2] J. D. Larson III, P. D. Bradley, S. Wartenberg, R. C. Ruby, “Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated Measurement System”, IEEE Ultrasonics Symposium, Vol. 1, pp. 863-868, 2000.
    [3] R. Ruby, P. Bradley, J. D. Larson III, Y. Oshmyansky, “PCS 1900 MHz duplexers using thin film bulk acoustic resonators”, Electronic Letters, Vol. 35, 1999.
    [4] K. M. Lakin, “Thin-film resonators and filters”, Ultrasonics Symposium, 1999. Proceedings. 1999 IEEE ,Vol. 2 , 1999.
    [5] L. Mang, F. Hickernell, R. Pennel, “Thin-Film Resonator ladder filter”, in IEEE MTT-S Int. Microwave Symp. Dig., (2), pp. 887-890, 1995.
    [6] Qing-Xin Su, Paul Kirby, IEEE TRANSATIONS ON MICROWAVE THEORY AND TECHNIQUES, (49), PP. 769, 2001.
    [7] M. Clement, E. Iborra, J. Sangrador, J. APPL. PHYS., 94 (3), 1495-1500, 2003.
    [8] J. B. Lee, J. P. Jung, “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs”, THIN SOLID FILMS, 447, 610-614, 2004.
    [9] C. Caliendo, “Gigahertz-band electroacoustic devices based on AlN thick films sputtered on Al2O3 at low temperature”, Appl. Phys. Lett., 83, pp. 4851-4853, 2003.
    [11] K. Lorenz, M. Gonsalves, “Comparative study of GaN and AlN nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition”, Appl. Phys. Lett., 77, pp. 3391, 2000.
    [12] J. W. Soh, S. S. Jang, I. S. Jeong, “C-axis orientation of AIN films prepared by ECR PECVD “, Thin Solid Films, 279, pp. 17, 1996.
    [13] K. S. Stevens, A. Ohtani, M. Kinniburgh, Appl. Phys. Lett., 65, pp. 321, 1994.
    [14] S. Tanaka, R. Scott Kern, ” Initial stage of aluminum nitride film growth on 6H-silicon carbide by plasma-assisted, gas-source molecular beam epitaxy”, Appl. Phys. Lett., 66, pp. 37, 1995.
    [15] S. A. Nikishin, V. G. Antipov, S. Francoeur, N. N. Faleev, “High-quality AlN grown on Si(111) by gas-source molecular-beam epitaxy with ammonia”, Appl. Phys. Lett., 75, pp. 484, 1999.
    [16] D. Sugihara et al., Jpn. J. Appl. Phys., Part 2, 39, pL 197, 2000.
    [17] G. A. Jeffrey and G. S. Parry, J. Chem. Phys., 23, pp. 406, 1953.
    [18] Q. Xia, H. Xia, “Pressure-induced rocksalt phase of aluminum nitride: A metastable structure at ambient condition“ J. Appl. Phys., 73, pp. 8198, 1993.
    [19] M. Setoyama., A. Nakayama, “Formation of cubic-AlN in TiN/AlN superlattice “, Surf. Coatings Technal., 86/87, pp. 225, 1996.
    [20] A. Madan et al., phys. Rev. Lett., Vol. 78, pp. 1743, 1997
    [21] I. W. Kim, Quan Li, L. D. Marks, “Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices”, Appl. Phys. Lett., Vol. 78, pp. 892, 2001
    [22] D. Chandrasekhar, M. E. Lin, “Characterization of group III-nitride semiconductors by high-resolution electron microscopy“, J. Crystal Growth, Vol. 152, pp. 135, 1995.
    [23] R. D. Vispute, H. Wu, “High quality epitaxial aluminum nitride layers on sapphire by pulsed laser deposition”, Appl. Phys. Lett., Vol. 67, pp. 1549, 1995.
    [24] R. D. Vispute, J. Narayan, Thin Solid Films, 299, pp. 94-103, 1997.
    [25] S. Ito, H. Fujioka, Thin Solid Films, 435, pp. 215-217, 2003.
    [26] I. Ivanov, L. Hultman, K. Järrendahl, “Growth of epitaxial AlN(0001) on Si(111) by reactive magnetron sputter deposition“, J. Appl. Phys., 78, pp. 5721, 1995.
    [27] H. Okano, N. Tanaka, Y. Takahashi, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices”, Appl. Phys. Lett. 64, pp. 166, 1994.
    [28] V. Lebedev, B. SchroK ter, Journal of Crystal Growth, 207,
    pp. 266, 1999.
    [29] A. Nakajima, Y. Furukawa, Journal of Crystal Growth, 265, pp. 351, 2004.
    [30] R. L. Puurunen, M. Lindblad, Physical Chemistry Physics,3 , pp. 1093, 2001.
    [31] K. Wongchotigul, S. Wilson, SILICON CARBIDE, III-NITRIDES AND RELATED MATERIALS, PTS 1 AND 2 MATERIALS SCIENCE FORUM, 264-2, pp. 1137-1140, 1998.
    [32] G. Y. Meng, S. Xie, Thin Solid Films, 334 (1-2), pp. 145-150, 1998.
    [33] W. Zhang , R. Vargas, Appl. Phys. Lett., 64, pp. 1359-1361, 1994.
    [34] K. Yasui, S. Hoshino, Applied Surface Science, 159–160, pp. 462–467, 2000.
    [35] R. Ruby, P. Merchant, 1994 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM
    [36] J. D. Larson III, Y. Oshrnyansky, “Measurement of effective k/sub t//sup 2/, q, R/sub p/, R/sub s/ vs. Temperature for Mo/AlN FBAR resonators”, Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, Vol. 1 , 2002.
    [37] S. H. Lee, J. H. Kim, IEEE International Frequency Control Symposium, pp. 45, 2002.
    [38] J. D. Larson III, R. C. Ruby, P. Bradley, “Power handling and temperature coefficient studies in FBAR duplexers for the 1900 MHz PCS band”, Ultrasonics Symposium, 2000 IEEE ,Vol. 1 , 22-25, 2000.
    [39] S. H. Kim, J. H. Kim, JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 19, pp. 1164-1168, 2001.
    [40] Electronic ceramics :/properties, devices, and applications, Lionel M. Levinson, 1988.
    [41] Bulk Acoustic Wave theory and Devices, Joel F. Rosenbaum.
    [42] J. D. Larson III, P. D. Bradley, S. Wartenberg, R. C. Ruby, “Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated Measurement System”, IEEE Ultrasonics Symposium, Vol. 1, pp. 863-868, 2000.
    [43] S. H. Lee, J. H. Kim, IEEE International Frequency Control Symposium and PDA Exhibition, pp. 45-49, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE