研究生: |
林永振 Yung-Chen Lin |
---|---|
論文名稱: |
C-軸優選氮化鋁薄膜成長及其體聲波元件(FBARs)之研究 Synthesize Highly-textured AlN Thin Film and Study on Its Application to Thin Film Bulk Acoustic Wave Resonators |
指導教授: |
戴念華
Nyan-Hwa Tai 林諭男 I-Nan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 聲波元件 、氮化鋁 |
外文關鍵詞: | FBARs, acoustic, AlN |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高頻聲波元件(FBAR)是未來無線通訊領域中很重要的技術,由於體聲波元件的開發使的濾波器及共振器的尺寸大幅的下降,在厚度上也進入了薄膜的尺寸,除此之外,體聲波元件有非常好的聲波特性,如:在高頻損耗低、整合性佳、功率忍受度高…等特性,所以這是一個非常有研究潛力的技術。
高頻聲波元件的開發有兩大重點,第一點是結構與線路設計;第二點是壓電材料,實驗中結構設計利用背向蝕刻矽晶的懸空結構來減少元件的損耗,導波的結構利用兩端(two port)的共平面結構,將聲波耦合到共振器元件。材料選用氮化鋁壓電材料,利用射頻濺鍍法低溫(不加熱)成長優選的氮化鋁薄膜,利用鋁靶提供鋁原子,在腔體中通入氮氣及氬氣,氮氣會在電漿中分解提供氮原子來源。由於只有C-軸優選的氮化鋁薄膜擁有壓電的特性,製程中在較高的氮氣比例及較短的基板到靶材距離可以成長出C-軸優選的氮化鋁薄膜,不論在任何基板上。因為聲波元件結構上的考量,必需將氮化鋁薄膜成長在金屬電極上,平常在低溫的環境下很難在金屬上得到好的C-軸優選及結晶性,實驗中選用一些金屬材料可成長為原子間距接近氮化鋁(002)平面的材料,藉著原子間距接近使氮化鋁易堆積成最密堆積面,進而改善薄膜結晶性。
References:
[1] R. C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, J. D. Larson III, “ Thin film bulk wave acoustic resonators (FBAR) for wireless applications”, Ultrasonics Symposium, 2001 IEEE ,Vol. 1, 2001.
[2] J. D. Larson III, P. D. Bradley, S. Wartenberg, R. C. Ruby, “Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated Measurement System”, IEEE Ultrasonics Symposium, Vol. 1, pp. 863-868, 2000.
[3] R. Ruby, P. Bradley, J. D. Larson III, Y. Oshmyansky, “PCS 1900 MHz duplexers using thin film bulk acoustic resonators”, Electronic Letters, Vol. 35, 1999.
[4] K. M. Lakin, “Thin-film resonators and filters”, Ultrasonics Symposium, 1999. Proceedings. 1999 IEEE ,Vol. 2 , 1999.
[5] L. Mang, F. Hickernell, R. Pennel, “Thin-Film Resonator ladder filter”, in IEEE MTT-S Int. Microwave Symp. Dig., (2), pp. 887-890, 1995.
[6] Qing-Xin Su, Paul Kirby, IEEE TRANSATIONS ON MICROWAVE THEORY AND TECHNIQUES, (49), PP. 769, 2001.
[7] M. Clement, E. Iborra, J. Sangrador, J. APPL. PHYS., 94 (3), 1495-1500, 2003.
[8] J. B. Lee, J. P. Jung, “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs”, THIN SOLID FILMS, 447, 610-614, 2004.
[9] C. Caliendo, “Gigahertz-band electroacoustic devices based on AlN thick films sputtered on Al2O3 at low temperature”, Appl. Phys. Lett., 83, pp. 4851-4853, 2003.
[11] K. Lorenz, M. Gonsalves, “Comparative study of GaN and AlN nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition”, Appl. Phys. Lett., 77, pp. 3391, 2000.
[12] J. W. Soh, S. S. Jang, I. S. Jeong, “C-axis orientation of AIN films prepared by ECR PECVD “, Thin Solid Films, 279, pp. 17, 1996.
[13] K. S. Stevens, A. Ohtani, M. Kinniburgh, Appl. Phys. Lett., 65, pp. 321, 1994.
[14] S. Tanaka, R. Scott Kern, ” Initial stage of aluminum nitride film growth on 6H-silicon carbide by plasma-assisted, gas-source molecular beam epitaxy”, Appl. Phys. Lett., 66, pp. 37, 1995.
[15] S. A. Nikishin, V. G. Antipov, S. Francoeur, N. N. Faleev, “High-quality AlN grown on Si(111) by gas-source molecular-beam epitaxy with ammonia”, Appl. Phys. Lett., 75, pp. 484, 1999.
[16] D. Sugihara et al., Jpn. J. Appl. Phys., Part 2, 39, pL 197, 2000.
[17] G. A. Jeffrey and G. S. Parry, J. Chem. Phys., 23, pp. 406, 1953.
[18] Q. Xia, H. Xia, “Pressure-induced rocksalt phase of aluminum nitride: A metastable structure at ambient condition“ J. Appl. Phys., 73, pp. 8198, 1993.
[19] M. Setoyama., A. Nakayama, “Formation of cubic-AlN in TiN/AlN superlattice “, Surf. Coatings Technal., 86/87, pp. 225, 1996.
[20] A. Madan et al., phys. Rev. Lett., Vol. 78, pp. 1743, 1997
[21] I. W. Kim, Quan Li, L. D. Marks, “Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices”, Appl. Phys. Lett., Vol. 78, pp. 892, 2001
[22] D. Chandrasekhar, M. E. Lin, “Characterization of group III-nitride semiconductors by high-resolution electron microscopy“, J. Crystal Growth, Vol. 152, pp. 135, 1995.
[23] R. D. Vispute, H. Wu, “High quality epitaxial aluminum nitride layers on sapphire by pulsed laser deposition”, Appl. Phys. Lett., Vol. 67, pp. 1549, 1995.
[24] R. D. Vispute, J. Narayan, Thin Solid Films, 299, pp. 94-103, 1997.
[25] S. Ito, H. Fujioka, Thin Solid Films, 435, pp. 215-217, 2003.
[26] I. Ivanov, L. Hultman, K. Järrendahl, “Growth of epitaxial AlN(0001) on Si(111) by reactive magnetron sputter deposition“, J. Appl. Phys., 78, pp. 5721, 1995.
[27] H. Okano, N. Tanaka, Y. Takahashi, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices”, Appl. Phys. Lett. 64, pp. 166, 1994.
[28] V. Lebedev, B. SchroK ter, Journal of Crystal Growth, 207,
pp. 266, 1999.
[29] A. Nakajima, Y. Furukawa, Journal of Crystal Growth, 265, pp. 351, 2004.
[30] R. L. Puurunen, M. Lindblad, Physical Chemistry Physics,3 , pp. 1093, 2001.
[31] K. Wongchotigul, S. Wilson, SILICON CARBIDE, III-NITRIDES AND RELATED MATERIALS, PTS 1 AND 2 MATERIALS SCIENCE FORUM, 264-2, pp. 1137-1140, 1998.
[32] G. Y. Meng, S. Xie, Thin Solid Films, 334 (1-2), pp. 145-150, 1998.
[33] W. Zhang , R. Vargas, Appl. Phys. Lett., 64, pp. 1359-1361, 1994.
[34] K. Yasui, S. Hoshino, Applied Surface Science, 159–160, pp. 462–467, 2000.
[35] R. Ruby, P. Merchant, 1994 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM
[36] J. D. Larson III, Y. Oshrnyansky, “Measurement of effective k/sub t//sup 2/, q, R/sub p/, R/sub s/ vs. Temperature for Mo/AlN FBAR resonators”, Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, Vol. 1 , 2002.
[37] S. H. Lee, J. H. Kim, IEEE International Frequency Control Symposium, pp. 45, 2002.
[38] J. D. Larson III, R. C. Ruby, P. Bradley, “Power handling and temperature coefficient studies in FBAR duplexers for the 1900 MHz PCS band”, Ultrasonics Symposium, 2000 IEEE ,Vol. 1 , 22-25, 2000.
[39] S. H. Kim, J. H. Kim, JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 19, pp. 1164-1168, 2001.
[40] Electronic ceramics :/properties, devices, and applications, Lionel M. Levinson, 1988.
[41] Bulk Acoustic Wave theory and Devices, Joel F. Rosenbaum.
[42] J. D. Larson III, P. D. Bradley, S. Wartenberg, R. C. Ruby, “Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated Measurement System”, IEEE Ultrasonics Symposium, Vol. 1, pp. 863-868, 2000.
[43] S. H. Lee, J. H. Kim, IEEE International Frequency Control Symposium and PDA Exhibition, pp. 45-49, 2002.