研究生: |
李堃源 Lee, Kun Yuan |
---|---|
論文名稱: |
改良花青素染料敏化太陽能電池之性能 On the performance improvement of the dye-sensitized solar cells based on anthocyanin. |
指導教授: |
徐邦達
Hsu, Ban Dar |
口試委員: |
黃倉秀
吳永俊 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 染料敏化太陽能電池 、花青素 、醣類 、退火 、紫高麗菜 |
外文關鍵詞: | dye sensitized solar cells, anthocyanin, red cabbage, annealing, saccharide |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
染料敏化太陽能電池(dye sensitized solar cells, DSSCs)是目前新穎的一種薄膜太陽能電池。在本論文中我們使用來自紫高麗菜的花青素作為太陽能電池的染料來源。有別於化學染料,天然染料具有無毒性、成本低廉、容易取得、對自然環境友善等優點。本論文中嘗試使用二氧化鈦電極退火及添加促進劑的方式,希望將染料敏化太陽能電池的光電轉換效率及其他各項數值有更進一步的提升。
我們在組裝太陽能電池前先將二氧化鈦電極進行退火,二氧化鈦電極以460°C活化30分鐘,而白金電極亦用高溫爐以350°C溫度放置30分鐘。經過退火過後的染料敏化太陽能電池在光電轉換效率的表現可以提升75.9%,而與光電轉換效率有關的幾項數據如短路電流密度 (short current density, Jsc in mA/cm2) 改變最為明顯,從2.56 mA/cm2提升至4.34 mA/cm2上升了69%。填充因子 (FillFactor)從0.66提升至0.7。開路電壓 (open-circuit voltage, Voc in V)的改變則不大。
另外在電極的浸泡上我們發現了在40°C的溫度下浸泡10分鐘時染料敏化太陽能電池的光電轉換效率會達到最大值。我們也繼續嘗試醣類 (carbohydrates)中的兩種寡醣類來做促進劑 (enhancer),分別是異麥芽寡糖(isomaltooligosaccharide)及木寡糖 (xylooligosaccharides),我們發現在木寡糖濃度達到300 mg/mL時染料敏化太陽能電池的效率表現會來到最大值2.145%。
脫氧膽酸 (deoxycholic acid)常被用來當作花青素的共同吸附劑 (coadsorbent),因其可以有效的提升光電轉換效率。在上述木寡糖濃度達到300 mg/mL的狀況下加入脫氧膽酸使其濃度達到40 mM時,光電轉換效率可以再被提升到2.366%。總合上述一連串的方法可使光電轉換效率從原先無退火的1.034%提升至2.366%,增加128.8%。
我們也將從花青素萃取液中分離出來的impurity fraction (IPF-1)進行濃縮,並且以促進劑的方式加回到花青素萃取液中,發現濃縮後的IPF-1對於光電轉換效率亦有相當程度的提升,從1.501%提升至1.732%上升了15.3%的效率,證實了紫高麗菜的花青素萃取液含有可以提升染料敏化太陽能電池效率之物質,它們很可能也是某種醣類。因此我們可以直接使用天然染料並不需要添加其他物質,只需在製程上加以改良即能有效率上的提升。希望這些研究在一切崇尚自然的訴求下,能為太陽能電池的製造提供一個更天然、成本更低的新選擇。
Dye-sensitized solar cells (DSSCs) is a relatively new thin film solar cells. In this study DSSCs were fabricated using anthocyanin as natural dye which was extracted from red cabbage (Brassica oleracea var. capitata f. rubra). Naturally pigments are friendly to environment, abundant in supply, easily accessible and highly absorptive in the visible region, all make them good candidates as alternative photosensitizers. In order to obtain a better performance of dye sensitized solar cells, several means to enhance the efficiency of DSSCs were explored.
Activation of electrode was done before assembly. TiO2 electrode was activated at 460oC for 30 mins and platinum electrode at 350 oC for 30 mins. Electrode activation can improve the efficiency by 75.9%. Here the short current density (Jsc in mA/cm2) was raised form 2.56 mA/cm2 to 4.34 mA/cm2, and fill factor was elevated from 0.66 to 0.7. No significant change in open circuit voltage.
An optimal soaking conditions for electrode were found to have a duration of 10 min and temperature at 40°C. In addition, carbohydrates have been shown to be performance enhancers. Two oligosacchrides, isomaltooligosaccharide (IMO) and xylooligosaccharides (XOS) were tested. The highest efficiency (2.145%) was reached when 300 mg/mL of XOS was used.
Deoxycholic acid (DCA) is a common coadsorbent used along with anthocyanin, for it can act as an effective efficiency enhancer. A combination of 300 mg/mL XOS and 40 mM DCA together could boost the efficiency of DSSCs form 1.034% to 2.366% (an accumulative improvement of 128.8%).
Impurity fraction (IPF-1) obtained from anthocyanin extract during purification was concentrated, and added back to anthocyanin extract as enhancer. The efficiency was raised from 1.501 to 1.732% (an improvement of 15.3%), indicating that anthocyanin extract contained unknown substances that can enhance the performance of DSSC. They are most likely some kinds of carbohydrates. It seems that we can effectively promote the efficiency using this natural dye without adding anything else, provided an improved process is employed. With the prevailing demand for being natural, our research may provide a good choice for making solar cells in a more natural way and at lower cost.
Agarwala, P., Makkar, P., Sharma, S., & Garg, R. (2014). The Effect of Heat
Treatment of TiO2 Nanoparticles on Photovoltaic Performance of Fabricated
DSSCs. Journal of Materials Engineering and Performance, 23(10), 3703-
3709.
Aswani Yella, Hsuan-Wei Lee, Hoi Nok Tsao,Chenyi Yi,Aravind Kumar Chandiran,Md.Khaja Nazeeruddin,Eric Wei-Guang Diau,Chen-Yu Yeh,Shaik M Zakeeruddin,Michael Grätzel. (2012). Porphyrin-Sensitized Solar Cells with Cobalt (II/III) – Based Redox Electrolyte Exceed 12 Percent Efficiency. SCIENCE,334(629-634).
Bang, So Yeon, Ko, Min Jae, Kim, Kyungkon, Kim, Jong Hak, Jang, In-Hyuk, & Park, Nam-Gyu. (2012). Evaluation of dye aggregation and effect of deoxycholic acid concentration on photovoltaic performance of N749-sensitized solar cell. Synthetic Metals, 162(17-18), 1503-1507.
Chang, Ho, & Lo, Yu-Jen. (2010). Pomegranate leaves and mulberry fruit as natural
sensitizers for dye-sensitized solar cells. Solar Energy, 84(10), 1833-1837.
Chen, Dehong, Huang, Fuzhi, Cheng, Yi-Bing, & Caruso, Rachel A. (2009). Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells. Advanced Materials, 21(21), 2206-2210.
Chen, Yousheng, Zeng, Zhanghua, Li, Chao, Wang, Weibo, Wang, Xuesong, & Zhang, Baowen. (2005). Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New Journal of Chemistry, 29(6), 773-776.
Chien, Chiang-Yu, & Hsu, Ban-Dar. (2013). Optimization of the dye-sensitized solar
cell with anthocyanin as photosensitizer. Solar Energy, 98, 203-211.
Chien, Chiang-Yu, & Hsu, Ban-Dar. (2014). Performance enhancement of dye-
sensitized solar cells based on anthocyanin by carbohydrates. Solar Energy,
108, 403-411.
Chou, C. C., Hu, F. C., Yeh, H. H., Wu, H. P., Chi, Y., Clifford, J. N., . . . Lee, G. H. (2014). Highly efficient dye-sensitized solar cells based on panchromatic ruthenium sensitizers with quinolinylbipyridine anchors. Angew Chem Int Ed Engl, 53(1), 178-183.
Dhas, Vivek, Muduli, Subas, Agarkar, Shruti, Rana, Abhimanyu, Hannoyer, Beatrice, Banerjee, Rahul, & Ogale, Satishchandra. (2011). Enhanced DSSC performance with high surface area thin anatase TiO2 nanoleaves. Solar Energy, 85(6), 1213-1219.
Fernando, J.M.R.C., Senadeera, G.K.R. (2008). Natural anthocyanins as photosensitizers for dye-sensitized solar devices. Current Science, 95, 663-666.
Furukawa, Shoji, Iino, Hiroshi, Iwamoto, Tomohisa, Kukita, Koudai, & Yamauchi, Shoji. (2009). Characteristics of dye-sensitized solar cells using natural dye. Thin Solid Films, 518(2), 526-529.
Garcia, Christian Graziani, Polo, André Sarto, & Murakami Iha, Neyde Yukie. (2003). Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 160(1-2), 87-91.
Grätzel, M., Photoelectrochemical cells. Nature, 2001, 414: 338-344
Hao, Sancun, Wu, Jihuai, Huang, Yunfang, & Lin, Jianming. (2006). Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy, 80(2), 209-214.
Hara, Kohjiro, Kurashige, Mitsuhiko, Dan-oh, Yasufumi, Kasada, Chiaki, Shinpo, Akira, Suga, Sadaharu, . . . Arakawa, Hironori. (2003). Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New Journal of Chemistry, 27(5), 783-785.
HIROYUKI SAKAKIBARA, YOSHINORI HONDA, SATOSHI NAKAGAWA,, & HITOSHI ASHIDA, AND KAZUKI KANAZAWA. (2003). Simultaneous Determination of All Polyphenols in Vegetables,Fruits, and Teas. J. Agric. Food Chem., 51, 571-581.
Huang, Chun-Hsien, Yang, Yen-Tung, & Doong, Ruey-An. (2011). Microwave-assisted hydrothermal synthesis of mesoporous anatase TiO2 via sol–gel process for dye-sensitized solar cells. Microporous and Mesoporous Materials, 142(2-3), 473-480.
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC.
JANI M. KOPONEN , ANU M. HAPPONEN, PIRJO H. MATTILA, & A. RIITTA
TÖRRÖNEN. (2007). Contents of Anthocyanins and Ellagitannins in Selected
Foods Consumed in Finland. J. Agric. Food Chem., 55, 1612-1619.
Jung, Hun-Gi, Kang, Yong Soo, & Sun, Yang-Kook. (2010). Anatase TiO2 spheres with high surface area and mesoporous structure via a hydrothermal process for dye-sensitized solar cells. Electrochimica Acta, 55(15), 4637-4641.
Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric
anthocyanin pigment content of fruit juices, beverages, natural colorants, and
wines by the pH differential method: collaborative study. J AOAC Int, 88(5),
1269-1278.
Lee, K. E., Gomez, M. A., Elouatik, S., & Demopoulos, G. P. (2010). Further
understanding of the adsorption mechanism of N719 sensitizer on anatase
TiO2 films for DSSC applications using vibrational spectroscopy and confocal
Raman imaging. Langmuir, 26(12), 9575-9583.
Lee, Kun-Mu, Suryanarayanan, Vembu, Ho, Kuo-Chuan, Justin Thomas, K. R., & Lin, Jiann T. (2007). Effects of co-adsorbate and additive on the performance of dye-sensitized solar cells: A photophysical study. Solar Energy Materials and Solar Cells, 91(15-16), 1426-1431.
Li, G., Richter, C. P., Milot, R. L., Cai, L., Schmuttenmaer, C. A., Crabtree, R. H., . . .
Batista, V. S. (2009). Synergistic effect between anatase and rutile TiO 2
nanoparticles in dye-sensitized solar cells. Dalton Transactions(45), 10078-10085.
Markakis, P., 1982. Stability of anthocyanins in foods. In: Markakis, P.(Ed.),
Anthocyanins as Food Colours. Academic Press, New York,
USA, pp. 163–180.
Marianne Dyrby, Nanna Westergaard, Henrik Stapelfeldt (2001). Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chemistry, 72, 431-437.
O’Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-
sensitized colloidal TiO2 films. Nature, 1991, 353:, 737-740.
Sharma, Ganesh D., Kurchania, Rajnish, Ball, Richard J., Roy, Mahesh S., & Mikroyannidis, John A. (2012). Effect of Deoxycholic Acid on the Performance of Liquid Electrolyte Dye-Sensitized Solar Cells Using a Perylene Monoimide Derivative. International Journal of Photoenergy, 2012, 1-7.
Su, Ren, Bechstein, Ralf, Sø, Lasse, Vang, Ronnie T., Sillassen, Michael, Esbjörnsson, Björn, . . . Besenbacher, Flemming. (2011). How the Anatase-to-Rutile Ratio Influences the Photoreactivity of TiO2. The Journal of Physical Chemistry C, 115(49), 24287-24292.
Torskangerpoll, Kjell, & Andersen, Øyvind M. (2005). Colour stability of
anthocyanins in aqueous solutions at various pH values. Food Chemistry,
89(3), 427-440.
Wu, Bing Tan and Yiying. (2006). Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites. J. Phys. Chem. B, 110, 15932 - 15938.
Yu, Jiaguo, Fan, Jiajie, & Cheng, Bei. (2011). Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films. Journal of Power Sources, 196(18), 7891-7898.
Zhang, H., Han, Y., Liu, X., Liu, P., Yu, H., Zhang, S., . . . Zhao, H. (2010). Anatase TiO(2) microspheres with exposed mirror-like plane {001} facets for high performance dye-sensitized solar cells (DSSCs). Chem Commun (Camb), 46(44), 8395-8397.