簡易檢索 / 詳目顯示

研究生: 邱冠璋
Chiu, Kuan-Chang
論文名稱: 鐵酸鉍/鎳酸鑭/氧化鋅核殼奈米柱結構的製備及特性研究
指導教授: 吳振名
Wu, Jenn-Ming
口試委員: 林鶴南
梁春昇
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 鐵酸鉍複鐵式材料鐵電材料核殼奈米柱結構模版法
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用模版法來製備奈米結構,由於氧化鋅奈米柱製備方法簡單且成熟,所以選擇氧化鋅奈米柱來當作模版,實驗分為兩大部分,第一部分藉由控制種子層鍍製參數、種子層摻雜的比例和控制水熱法成長條件,製備出適合的模版,並探討柱體成長機制;第二部分利用射頻磁控濺鍍法,成功製備出鐵酸鉍/鎳酸鑭/氧化鋅奈米柱陣列核殼奈米柱結構。藉由導電式原子力顯微鏡量測單根奈米柱的電性,此結構在未極化之前,diode的行為並不明顯,在施加+10V的極化後,呈現明顯的diode的行為;施加-10V的極化後,則呈現反向diode行為。反向的外加電壓使靜電場方向反轉,表示此結構呈現可切換的diode特性,此現象為鐵電材料其內部極化可由外加電場反轉的特性。鐵酸鉍的電流傳導機制在正偏壓端為Pool-Frenkel emission,在負偏壓端電流傳導機制為Schottky emission,在柱體上方中心和旁邊量測的電性行為類似。PFM量測中,in-plane的訊號在施加±10V時明顯有些區塊變亮或變暗且±10V訊號對比正好相反,退回0V後,可觀察到有殘留極化的現象,表示此材料可以透過外加電壓使極化方向有所改變,且有殘留極化的現象,證明此材料擁有鐵電特性。


    摘要 I 致謝 II 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第二章 文獻回顧 6 2-1 氧化鋅介紹 6 2-1-1 氧化鋅特性 6 2-1-2 Ga-doped ZnO的介紹 7 2-1-3 氧化鋅奈米柱的製備 8 2-2 複鐵式材料介紹 10 2-2-1 磁性質 11 2-2-2 鐵電性質 15 2-2-3 極化機制 17 2-2-4 電流傳導機制 19 2-3 鐵酸鉍介紹 21 2-3-1 鐵酸鉍晶體結構 21 2-3-2 鐵酸鉍特性 22 2-3-3 鐵酸鉍光伏特性 24 2-3-4 鐵酸鉍奈米結構 25 第三章 實驗步驟 36 3-1 實驗大綱 36 3-2 實驗製程 37 3-2-1 基板之準備 37 3-2-2 靶材之製作 37 3-2-3 種子層的鍍製 38 3-2-4 氧化鋅奈米柱成長 38 3-2-5 鎳酸鑭緩衝層和鐵酸鉍的鍍製 39 3-3 實驗量測 39 3-3-1 X光繞射儀(XRD) 39 3-3-2 掃描式電子顯微鏡(SEM) 40 3-3-3 霍爾效應量測系統 40 3-3-4 紫外光-可見光光譜儀 40 3-3-5 穿透式電子顯微鏡(TEM) 41 3-3-6 原子力顯微鏡(AFM) 41 第四章 結果與討論 45 4-1 氧化鋅奈米柱模版(template)的製備 45 4-1-1 以3at% GZO做為種子層與下電極來鍍製的結構 45 4-1-2 改變水熱法參數 46 4-1-3 不同水熱法成長時間 48 4-1-4 改變種子層鍍製參數 49 4-1-5 改變GZO靶材比例 50 4-2 緩衝層鎳酸鑭和鐵酸鉍的鍍製 52 4-2-1 微觀結構觀測 52 4-2-2 XRD量測 53 4-2-3 紫外光-可見光光譜儀量測 53 4-2-4 單根柱體TEM觀測 55 4-3 單根奈米柱原子力顯微鏡的量測 56 4-3-1 可切換的(switchable) diode特性 56 4-3-2 BFO電流傳導機制 58 4-3-3 壓電力顯微鏡量測 63 第五章 結論 98 第六章 參考文獻 102

    [1] Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299 (5613), 1719.

    [2] Yun, K. Y.; Noda, M.; Okuyama, M.; Saeki, H.; Tabata, H.; Saito, K., Structural and multiferroic properties of BiFeO3 thin films at room temperature. Journal of Applied Physics 2004, 96 (6), 3399.

    [3] Yun, K. Y.; Ricinschi, D.; Kanashima, T.; Noda, M.; Okuyama, M., Giant ferroelectric polarization beyond 150 µC/cm2 in BiFeO3 thin film. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 2004, 43 (5A), 647.

    [4] Wang, J.; Li, M. Y.; Liu, X. L.; Pei, L.; Liu, J.; Yu, B. F.; Zhao, X. Z., Synthesis and Multiferroic Properties of BiFeO3 Nanotubes. Chinese Physics Letters 2009, 26 (11), 117301.

    [5] Zhang, X. Y.; Lai, C. W.; Zhao, X.; Wang, D. Y.; Dai, J. Y., Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays. Applied Physics Letters 2005, 87 (14), 143102.

    [6] Zhang, X. Y.; Dai, J. Y.; Lai, C. W., Synthesis and characterization of highly ordered BiFeO3 multiferroic nanowire arrays. Progress in Solid State Chemistry 2005, 33 (2-4), 147.

    [7] Chen, C.; Cheng, J. R.; Yu, S. W.; Che, L. J.; Meng, Z. Y., Hydrothermal synthesis of perovskite bismuth ferrite crystallites. J. Cryst. Growth 2006, 291 (1), 135.

    [8] Lu, X. M.; Xie, J. M.; Song, Y. Z.; Lin, J. M., Surfactant-assisted hydrothermal preparation of submicrometer-sized two-dimensional BiFeO3 plates and their photocatalytic activity. Journal of Materials Science 2007, 42 (16), 6824.

    [9] Zhang, X.; Bourgeois, L.; Yao, J.; Wang, H.; Webley, P. A., Tuning the morphology of bismuth ferrite nano- and microcrystals: From sheets to fibers. Small 2007, 3 (9), 1523.

    [10] Hojamberdiev, M.; Xu, Y. H.; Wang, F. Z.; Wang, J.; Liu, W. G.; Wang, M. Q., Morphology-controlled hydrothermal synthesis of bismuth ferrite using various alkaline mineralizers. Ceramics-Silikaty 2009, 53 (2), 113.

    [11] Baruah, S.; Dutta, J., Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials 2009, 10 (1), 013001.

    [12] Ahsanulhaq, Q.; Umar, A.; Hahn, Y. B., Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties. Nanotechnology 2007, 18 (11), 115603.

    [13] Yim, K.; Kim, H. W.; Lee, C., Effects of annealing on structure, resistivity and transmittance of Ga doped ZnO films. Materials Science and Technology 2007, 23 (1), 108.

    [14] Kim, S.; Lee, W. I.; Lee, E. H.; Hwang, S. K.; Lee, C., Dependence of the resistivity and the transmittance of sputter-deposited Ga-doped ZnO films on oxygen partial pressure and sputtering temperature. Journal of Materials Science 2007, 42 (13), 4845.

    [15] Shin, S. W.; Sim, K. U.; Moon, J. H.; Kim, J. H., The effect of processing parameters on the properties of Ga-doped ZnO thin films by RF magnetron sputtering. Current Applied Physics 2010, 10, 274.

    [16] Park, S. E.; Lee, J. C.; Song, P. K.; Lee, J. H., Properties of Gallium-Doped Zinc-Oxide Films Deposited by RF or DC Magnetron Sputtering with Various GZO Targets. Journal of the Korean Physical Society 2009, 54 (3), 1283.

    [17] Liang, S.; Bi, X. F., Structure, conductivity, and transparency of Ga-doped ZnO thin films arising from thickness contributions. Journal of Applied Physics 2008, 104 (11), 113533.
    [18] Qiu, J. J.; Li, X. M.; He, W. Z.; Park, S. J.; Kim, H. K.; Hwang, Y. H.; Lee, J. H.; Kim, Y. D., The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology 2009, 20 (15), 155603.

    [19] Li, Q. W.; Bian, J. M.; Sun, J. C.; Wang, J. W.; Luo, Y. M.; Sun, K. T.; Yu, D. Q., Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Applied Surface Science 2010, 256 (6), 1698.

    [20] Ma, T.; Guo, M.; Zhang, M.; Zhang, Y. J.; Wang, X. D., Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 2007, 18 (3), 035605.

    [21] Wang, S. F.; Tseng, T. Y.; Wang, Y. R.; Wang, C. Y.; Lu, H. C.; Shih, W. L., Effects of preparation conditions on the growth of ZnO nanorod arrays using aqueous solution method. International Journal of Applied Ceramic Technology 2008, 5 (5), 419.

    [22] Sugunan, A.; Warad, H. C.; Boman, M.; Dutta, J., Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology 2006, 39 (1), 49.

    [23] Zhou, Y.; Wu, W. B.; Hu, G. D.; Wu, H. T.; Cui, S. G., Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine. Materials Research Bulletin 2008, 43 (8-9), 2113.

    [24] Eerenstein, W.; Mathur, N. D.; Scott, J. F., Multiferroic and magnetoelectric materials. Nature 2006, 442 (7104), 759.

    [25] Kittel C., Introduction to solid state physics. John Wiley &Sons, New York 1996, 7th ed.

    [26] Burns G., Solid state physics. Academic Press, New York 1985

    [27] Hill, N. A., Why are there so few magnetic ferroelectrics? Journal of Physical Chemistry B 2000, 104 (29), 6694.

    [28] Haertling, G. H., Ferroelectric ceramics: History and technology. Journal of the American Ceramic Society 1999, 82 (4), 797.

    [29] Dawber, M.; Rabe, K. M.; Scott, J. F., Physics of thin-film ferroelectric oxides. Reviews of Modern Physics 2005, 77 (4), 1083.

    [30] Kingery W. D.; Bowen H. K.; Uhlmann D. R.,. Introduction to ceramics. John Wiley and Sons, New York 1976

    [31] Lines M. E.; Glass A. M., Principles and application of ferroelectrics and related materials. Oxford University Press,New York 2001, Chap.2-5.

    [32] Pabst, G. W.; Martin, L. W.; Chu, Y. H.; Ramesh, R., Leakage mechanisms in BiFeO3 thin films. Applied Physics Letters 2007, 90 (7), 072902.

    [33] Chen, S. W.; Wu, J. M., Unipolar resistive switching behavior of BiFeO3 thin films prepared by chemical solution deposition. Thin Solid Films 2010, 519 (1), 499.

    [34] Ruette, B.; Zvyagin, S.; Pyatakov, A. P.; Bush, A.; Li, J. F.; Belotelov, V. I.; Zvezdin, A. K.; Viehland, D., Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order. Physical Review B 2004, 69 (6), 064114.

    [35] Liu, K.; Fan, H. Q.; Ren, P. R.; Yang, C., Structural, electronic and optical properties of BiFeO3 studied by first-principles. Journal of Alloys and Compounds 2011, 509 (5), 1901.

    [36] Teague, J. R.; Gerson, R.; James, W. J., Dielectric hysteresis in single crystal BiFeO3. Solid State Communications 1970, 8 (13), 1073.

    [37] Kumar, M. M.; Palkar, V. R.; Srinivas, K.; Suryanarayana, S. V., Ferroelectricity in a pure BiFeO3 ceramic. Applied Physics Letters 2000, 76 (19), 2764.

    [38] Morozov, M. I.; Lomanova, N. A.; Gusarov, V. V., Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides. Russian Journal of General Chemistry 2003, 73 (11), 1676.

    [39] Wang, Y. P.; Zhou, L.; Zhang, M. F.; Chen, X. Y.; Liu, J. M.; Liu, Z. G., Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Applied Physics Letters 2004, 84 (10), 1731.

    [40] Roginska.Ye; Tomashpo.Yy; Venevtse.Yn; Petrov, V. M.; Zhdanov, G. S., Nature of dielectric and magnetic properties of BiFeO3. Soviet Physics Jetp-Ussr 1966, 23 (1), 47.

    [41] Li, J. F.; Wang, J. L.; Wuttig, M.; Ramesh, R.; Wang, N.; Ruette, B.; Pyatakov, A. P.; Zvezdin, A. K.; Viehland, D., Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Applied Physics Letters 2004, 84 (25), 5261.

    [42] Smith, R. T.; Achenbac.Gd; Gerson, R.; James, W. J., Dielectric properties of solid solutions of BiFeO3 with Pb(Ti,Zr)O3 at high temperature. Journal of Applied Physics 1968, 39 (1), 70.

    [43] Ueda, K.; Tabata, H.; Kawai, T., Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin films at room temperature. Applied Physics Letters 1999, 75 (4), 555.

    [44] Qi, X. D.; Dho, J.; Tomov, R.; Blamire, M. G.; MacManus-Driscoll, J. L., Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Applied Physics Letters 2005, 86 (6), 062903.

    [45] Popov, Y. F.; Zvezdin, A. K.; Vorobev, G. P.; Kadomtseva, A. M.; Murashev, V. A.; Rakov, D. N., Linear magnetoelectric effect and phase-transitions in bismuth ferrite, BiFeO3. Jetp Letters 1993, 57 (1), 69.

    [46] Choi, T.; Lee, S.; Choi, Y. J.; Kiryukhin, V.; Cheong, S. W., Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science 2009, 324 (5923), 63.

    [47] Yang, S. Y.; Martin, L. W.; Byrnes, S. J.; Conry, T. E.; Basu, S. R.; Paran, D.; Reichertz, L.; Ihlefeld, J.; Adamo, C.; Melville, A.; Chu, Y. H.; Yang, C. H.; Musfeldt, J. L.; Schlom, D. G.; Ager, J. W.; Ramesh, R., Photovoltaic effects in BiFeO3. Applied Physics Letters 2009, 95 (6), 062909.

    [48] Yang, S. Y.; Seidel, J.; Byrnes, S. J.; Shafer, P.; Yang, C. H.; Rossell, M. D.; Yu, P.; Chu, Y. H.; Scott, J. F.; Ager, J. W.; Martin, L. W.; Ramesh, R., Above-bandgap voltages from ferroelectric photovoltaic devices. Nature Nanotechnology 2010, 5 (2), 143.

    [49] Ji, W.; Yao, K.; Liang, Y. C., Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO3 Thin Films. Advanced Materials 2010, 22 (15), 1763.

    [50] Yuan, G. L.; Wang, J. L., Evidences for the depletion region induced by the polarization of ferroelectric semiconductors. Applied Physics Letters 2009, 95 (25), 252904.

    [51] Qin, M.; Yao, K.; Liang, Y. C., High efficient photovoltaics in nanoscaled ferroelectric thin films. Applied Physics Letters 2008, 93 (12), 122904.

    [52] Yao, K.; Gan, B. K.; Chen, M. M.; Shannigrahi, S., Large photo-induced voltage in a ferroelectric thin film with in-plane polarization. Applied Physics Letters 2005, 87 (21), 212906.

    [53] Chen, S. W.; Lee, C. C.; Chen, M. T.; Wu, J. M., Synthesis of BiFeO3/ZnO core-shell hetero-structures using ZnO nanorod positive templates. Nanotechnology 2011, 22 (11), 115605.

    [54] Chen, S. W.; Wu, J. M., Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method. Acta Materialia 2011, 59 (2), 841.
    [55] Kumar, A.; Rai, R. C.; Podraza, N. J.; Denev, S.; Ramirez, M.; Chu, Y. H.; Martin, L. W.; Ihlefeld, J.; Heeg, T.; Schubert, J.; Schlom, D. G.; Orenstein, J.; Ramesh, R.; Collins, R. W.; Musfeldt, J. L.; Gopalan, V., Linear and nonlinear optical properties of BiFeO3. Applied Physics Letters 2008, 92 (12), 121915.

    [56] Joshi, U. A.; Jang, J. S.; Borse, P. H.; Lee, J. S., Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Applied Physics Letters 2008, 92 (24), 242106.

    [57] Chen, X. Y.; Yu, T.; Gao, F.; Zhang, H. T.; Liu, L. F.; Wang, Y. M.; Li, Z. S.; Zou, Z. G.; Liu, J. M., Application of weak ferromagnetic BiFeO3 films as the photoelectrode material under visible-light irradiation. Applied Physics Letters 2007, 91 (2), 022114.

    [58] Yang, H.; Wang, Y. Q.; Wang, H.; Jia, Q. X., Oxygen concentration and its effect on the leakage current in BiFeO3 thin films. Applied Physics Letters 2010, 96 (1), 012909.

    [59] Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L., Photoconductivity in BiFeO3 thin films. Applied Physics Letters 2008, 92 (9), 091905.

    [60]Wang, C.; Jin, K. J.; Xu, Z. T.; Wang, L.; Ge, C.; Lu, H. B.; Guo, H. Z.; He, M.; Yang, G. Z., Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films. Applied Physics Letters 2011, 98 (19), 192901.

    [61]Robertson, J.; Chen, C. W., Schottky barrier heights of tantalum oxide, barium strontium titanate, lead zirconate titanate and strontium bismuth tantalate. Applied Physics Letters 1999, 74 (8), 1168

    [62]Clark, S. J.; Robertson, J., Band gap and Schottky barrier heights of multiferroic BiFeO3. Applied Physics Letters 2007, 90 (13), 132903.

    [63] Balke, N.; Bdikin, I.; Kalinin, S. V.; Kholkin, A. L., Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future. Journal of the American Ceramic Society 2009, 92 (8), 1629.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE