簡易檢索 / 詳目顯示

研究生: 粘金重
Ching-Chung Nien
論文名稱: 奈米壓印模穴充模分析與監測
ANALYSIS AND MONITORING OF MOLD CAVITY FILLING IN NANOIMPRINTING PROCESS
指導教授: 賀陳弘
Hong Hocheng
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 181
中文關鍵詞: 奈米壓印模穴充模電容監測
外文關鍵詞: Nanoimprint, Mold cavity filling, Capacitance monitoring
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米壓印製程已被公認具高潛力,可用以大量生產奈米尺度裝置之方法。近年來針對奈米壓印製程的研究雖已有相當多顯著研究成果,然而至目前為止奈米壓印製程只能在實驗室製作少量之樣品,這種情況限制了該製程實際的產業應用。因此,如何提高奈米壓印製程之產出率以符合產業應用之大量生產需求已然成為研究奈米壓印製程的各個研究團隊所面臨最具挑戰的課題。除此之外,在奈米壓印製程中,模穴的充模對圖形轉印具有決定性的影響,也在壓印產品品質與製程之產出率上扮演關鍵性角色。因此,能即時於線上監測模穴充模過程以方便掌握圖形轉印的狀況是奈米壓印製程設備非常急需的一項功能需求。
    為瞭解奈米壓印過程中圖案形成與充模變異的相關定量資訊,本研究使用有限元素方法分別對以PMMA與mr-I 7030為壓印高分子材料的壓印過程進行充模模擬分析,其中PMMA高分子材料被假設為橡膠彈性體,而mr-I 7030高分子材料則被視為不可壓縮粘滯性流體。針對PMMA之模擬分析,於建模過程中係假設模具材料性質為線性彈性體,且受加熱處於玻璃轉換溫度以上之高分子被視為可以用穆尼-黎弗林模型(Mooney-Rivlin)描述之非線性橡膠彈性體。此一數值模型可以預測在壓印過程中任一時點及各種不同深寬比模穴的充模情形。而為了研究模具上圖案密度與存在於模具與高分子間之接觸摩擦對壓印過程中充模之影響,本研究已對具有混合圖案之壓印模具進行模擬,並且也探討了接觸摩擦係數對充模的敏感度分析。模穴的形狀與圖案密度對壓印過程中之充模均有顯著影響,然而接觸摩擦係數則只有輕微的影響。另外,使用粘滯性流體模型對mr-I 7030進行壓印充模模擬分析之結果亦顯示模具上圖案密度對充模完成之時間確有影響。從模擬分析的結果發現具有混合圖案之壓印模具其模穴之充模具有顯著非均一性。這也更強化與提供於奈米壓印製程中實施線上監測充模的合理性與必要性。
    本研究所提出之充模監測方法係以電容量測為基礎。為落實本監測方法,本研究已進行多項相關的工作,包括壓印過程中電容偵測的數值分析、壓印製程的調整、具可靠度電容感測器的設計,以及各項量測資料分析。於本研究中,已建立用以描述平板電容器的數值有限元素模型,並用此模型模擬預測充模對電容值的影響情形。另外,為量測電容值的連續變異情形,執行了一系列的等溫壓印實驗,在其間於各個不同壓印階段進行電容值的量測。量測的電容值指出充模的後半段電容值有顯著變化,充模狀況是可加以監測的。因此,實驗結果已展現電容量測確實可於線上提供奈米壓印過程中模穴充模的即時狀態。
    經由此研究已初步證實電容量測確為一可用於奈米壓印製程中監測充模情形的方式。在未來如能增進其於較高溫與高壓嚴苛環境下的穩健性,則其實際應用將非常容易實現。而為加速實現壓印過程之模穴充模即時監控的最終目標,利用類神經網路模型以建立電容量與充模高度之間的功能關係是未來非常值得投入研究的一重要方向。


    Nanoimprint lithography (NIL) has been recognized as one of the very promising nonphotolithographic methods for nanoscale device manufacturing. While NIL has been studied and investigated to some detail, and significant achievements of the application have been demonstrated in recent years, NIL has been capable of patterning only fairly small samples, which severely limits the industrial applications of the technique. As a consequence, how to improve throughput to meet the requirements for large-scale industrial use is the most challenging issue for the research community of NIL at the present time. In addition, the mold cavity filling process is vital in pattern transfer and governs the pattern transfer quality as well as the throughput of the NIL process. Hence, the mold cavity filling control and in-situ process monitoring in a timely fashion to determine the status of patterning are needed.
    To understand pattern formation and exploring the quantitative information on mold cavity filling variations during the nanoimprinting process, the imprinting numerical analysis for PMMA polymer and mr-I 7030 polymer has been successfully performed using Mooney-Rivlin model and viscous flow model respectively. For the case of numerical analysis of nanoimprinting on PMMA with Mooney-Rivlin model, a finite element model for the single mold cavity has been constructed to simulate the nanoimprint process. The material behavior of the imprint mold is assumed to be linear elastic, and the polymer preheated above its glass transition temperature is considered to behave as a nonlinear elastic body described by the Mooney-Rivlin model. Using the developed numerical model, the mold cavity filling variations can be determined at any nanoimprint stage and for a mold cavity with a variety of aspect ratios. Moreover, to investigate the effects of pattern density and contact friction existing between the imprint mold and polymer on mold cavity filling of the nanoimprinting process, the model for an imprint mold with mixed patterns in an active area has been constructed to explore mold cavity filling in the nanoimprinting process, and a sensitivity analysis of the contact friction coefficient for the mold cavity filling is performed. Both the cavity feature and pattern density have significant effects on mold cavity filling of the nanoimprinting process, while the contact friction coefficient has a mild effect. In the numerical investigation of nanoimprinting on mr-I 7030 polymer with viscous flow model, the software package ANSYS/FLOTRAN is adopted to simulate the mold cavity filling process and the significant influence of pattern density on mold cavity filling has also been observed. The results arising from the model indicate that the imprint mold with varied pattern density has nonuniform displacement during the imprinting process and further strengthen the rationale of implementing an in-situ mold cavity filling monitoring system for nanoimprinting.
    The proposed mold cavity filling monitoring method for nanoimprinting operations in this study is based on capacitance measurement. In carrying out the proposed monitoring method, a broad range of aspects including numerical analysis of capacitive detection in nanoimprinting process, tuning the imprint process, designing a reliable capacitive sensor, determining the right materials and micromachining process for sensing electrodes, and data analysis have been covered. A finite element model valid for the numerical description of a parallel-plate capacitor has been developed, and simulations were carried out to predict the influence of mold cavity filling on capacitance values. In addition, to measure the continuous variations in capacitance, a series of imprinting experiments have been performed isothermally, and the capacitance values have also been measured at various imprinting stages. The major final stage of mold cavity filling near the end can be monitored and the experimental results have demonstrated that the capacitance measurements indeed provide information in-situ that can feasibly tell the cavity filling status during nanoimprinting.
    Throughout the study, the proposed capacitance measurement is found a promising approach to monitor mold cavity filling in nanoimprinting process, and the practical application of the conducted research is expected with certain improvement of the robustness of the monitoring technique in harsh environment at high imprinting temperature and applied pressure. The use of neural network to model the functional relationship between the capacitance value and the rise of mold cavity filling is recommended as another potential future research to achieve the ultimate goal of real-time mold cavity filling control for imprinting process.

    TABLE OF CONTENTS ABSTRACT........................………………………………………………………II ACKNOWLEDGEMENTS....................................................................................V TABLE OF CONTENTS...………………………………………………………VI LIST OF FIGURES……………………………………………………………….X LIST OF TABLES……………………………………………………………..XVI NOMENCLATURE..........................................................................................XVII CHAPTER 1 INTRODUCTION…………………………………………………1 1.1 Background and motivation…………………………………………….1 1.2 Problem statement and objectives………………………………………3 1.3 Organization of thesis…………………………………………………...8 CHAPTER 2 A REVIEW OF NANOIMPRINT LITHOGRAPHY.……............11 2.1 Overview of nanoimprint lithography…………………………………11 2.1.1 Principle of nanoimprint lithography……………………….......11 2.1.2 Achievements and potential applications……………………….13 2.1.3 Challenges to nanoimprint lithography…………………………17 2.2 Pattern formation issues of nanoimprinting…………………………...18 2.2.1 Flow behavior of polymer during nanoimprinting……………...19 2.2.2 Models of pattern formation in nanoimprinting……………...22 2.2.3 Factors degrade the quality of pattern formation……………….29 2.3 Summary………………………………………………………………32 CHAPTER 3 NUMERICAL ANALYSIS OF FILLING MOLD CAVITY IN NANOIMPRINTING PROCESS………………………………34 3.1 Numerical simulation of nanoimprinting on PMMA with Mooney-Rivlin model............................................................................35 3.1.1 Finite element modeling………………………………………...36 3.1.2 Numerical calculations………………………………………….38 3.2 Numerical simulation of nanoimprinting on mr-I 7030 polymer with viscous flow model…………………………………………………….43 3.2.1 Formulation of viscous fluid flow………………………………45 3.2.2 The volume-of-fluid method……………………………………46 3.2.3 Computational algorithm……………………………………….47 3.2.4 Modeling and simulation of viscous fluid flow in imprinting process.…………………………………………………………49 3.3 Results and discussion…………………………………………………52 3.3.1 Single mold cavity with various aspect ratios…………………..52 3.3.2 Imprint mold with aperiodic cavities…………………………...56 3.3.3 Sensitivity analysis of the effect of the contact friction coefficient.....……………………………………………………58 3.3.4 Simulation results of viscous fluid model………………………60 3.4 Summary......................………………………………………………..66 CHAPTER 4 MODELLING AND ANALYSIS OF CAPACITIVE DETECTION IN NANOIMPRINTING PROCESS..............................................69 4.1 Review of previous developments in capacitive monitoring……….....70 4.2 Principle and theoretical analysis of capacitance measurement.............76 4.3 Modeling for capacitive sensing electrode……………………............85 4.4 Summary………………………………………………………………95 CHAPTER 5 EXPERIMENTAL ANALYSIS…………………………………...98 5.1 Experimental set-up…………………………………………………...98 5.1.1 Overview of MIRL/ITRI imprinting system..............................100 5.1.2 Imprint mold design and fabrication..........................................100 5.1.3 Specimen preparation………………………………………….113 5.1.4 Fabrication of capacitance-detecting electrode………………..113 5.2 Experimental parameters and procedures for capacitance measurements.......................................................................................119 5.3 Experimental results and discussion…………………………………131 5.3.1 Measured capacitance…………………………………………131 5.3.2 Comparison of numerical calculations and experimental results………………………………………………………….138 5.4 Summary……………………………………………………………..139 CHAPTER 6 CONCLUSIONS AND FURTHER RESEARCH………………141 6.1 Conclusions…………………………………………..………………141 6.1.1 Modeling and simulation of filling mold cavity………………142 6.1.2 Modeling and analysis of capacitive detection………………..144 6.1.3 Implementing capacitance measurements on imprinting system…………………………………………………………146 6.2 Suggestions for further research……………………………………...149 REFERENCES………………………………………………………………….153 APPENDIX A......................................................................................................163 APPENDIX B......................................................................................................169 APPENDIX C......................................................................................................178

    REFERENCES
    [1] H. C. Scheer, H. Schultz, T. Hoffmann, and C. M. S. Torres, “Nanoimprint techniques”, in Handbook of Thin Film Materials, H. S. Nalwa, Ed., Academic Press, New York (2002).
    [2] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett. Vol. 67, Issue 21 (1995) 3114-3116.
    [3] S. Y. Chou, U.S. Patent 5,772,905, 1998.
    [4] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography”, J. Vac. Sci. Technol. B 14 (1996) 4129-4133.
    [5] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution”, Science, 272 (1996) 85-87.
    [6] S. Y. Chou and P. R. Krauss, “Imprint lithography with sub-10 nm feature Size and high throughput”, Microelectron. Eng. 35 (1997) 237-240.
    [7] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications”, J. Vac. Sci. Technol. B 15 (1997) 2897-2904.
    [8] C. M. S. Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. C. Cedeno, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach”, Mater. Sci. Eng. C 23 (2003) 23–31.
    [9] S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects”, Nanotechnology 12 (2001) 91–95.
    [10] H. Schulz, H.-C. Scheer, T. Hoffmann, C. M. S. Torres, K. Pfeiffer, G. Bleidiessel, G. Grutzner, C. Cardinaud, F. Gaboriau, M. C. Peignon, J. Ahopelto, and B. Heidari, “New polymer materials for nanoimprinting”, J. Vac. Sci. Technol. B 18 (2000) 1861–1865.
    [11] H. Schulz, D. Lyebyedyev, H.-C. Scheer, K. Pfeiffer, G. Bleidiessel, G.Grutzner, and J. Ahopelto. “Master replication into thermosetting polymers for nanoimprinting”, J. Vac. Sci. Technol. B 18 (2000) 3582–3585.
    [12] F. Gottschalch, T. Hoffmann, C. M. S. Torres, H. Schulz, and H. C. Scheer, “Polymer issues in nanoimprinting technique”, Solid-State Electronics 43 (1999) 1079-1083.
    [13] K. Pfeiffer, F. Reuther, M. Fink, G. Gruetzner, P. Carlberg, I. Maximov, L. Montelius, J. Seekamp, S. Zankovych, C. M. S. Torres, H. Schulz, and H. C. Scheer, “A comparison of thermally and photochemically cross-linked polymers for nanoimprinting”, Microelectron. Eng. 67–68 (2003) 266–273.
    [14] D. Lyebyedyev, H. Schulz, H. C. Scheer, and K. Pfeiffer, “Characterisation of new thermosetting polymer materials for nanoimprint lithography”, Mater. Sci. and Eng. C 15 (2001) 241–243.
    [15] R. W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly, and P. Groning, “The deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing”, Appli. Surf. Sci. 143 (1999) 301–308.
    [16] L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, “Flow behaviour of thin polymer films used for hot embossing lithography”, Microelectron. Eng. 54 (2000) 229–245.
    [17] H. C. Scheer and H. Schulz, “A contribution to the flow behaviour of thin polymer films during hot embossing lithography”, Microelectron. Eng. 56 (2001) 311–332.
    [18] H. C. Scheer and H. Schulz, “Problems of the nanoimprinting technique for nanometer scale pattern definition”, J. Vac. Sci. Technol. B 16 (1998) 3917-3921.
    [19] H. Schift, L. J. Heyderman, M. Auf der Maur and J. Gobrecht, “Pattern formation in hot embossing of thin polymer films”, Nanotechnology 12 (2001) 173–177.
    [20] C. Finder, M. Beck, J. Seekamp, K. Pfeiffer, P. Carlberg, I. Maximov, F. Reuther, E.-L. Sarwe, S. Zankovich, J. Ahopelto, L. Montelius, C. Mayer, and C. M. S. Torres, “Fluorescence microscopy for quality control in nanoimprint lithography”, Microelectron. Eng. 67–68 (2003) 623–628.
    [21] Z. Yu, H. Gao and S. Y. Chou, “In situ, real-time process characterization and control in nanoimprint lithography using time-resolved diffractive scatterometry”, presented at EIPBN48 Conf., 2004, San Diego.
    [22] Z. Yu, H. Gao and S. Y. Chou, “New developments in real-time imprint monitoring by scattering-of-light (RIMS)”, presented at NNT Conf., 2004, Vienna.
    [23] H. Hocheng and C. C. Nien, R.O.C. Patent 194337 (2004); U.S. Patent 6909998 (2005).
    [24] H. Hocheng and C. C. Nien, R.O.C. Patent I226934 (2005); U.S. Pending Patent 10/791,926 (2004).
    [25] C. C. Nien, H. Hocheng and T. C. Liu, R.O.C Patent I235628 (2005); U.S. Pending Patent 10/851113 (2004).
    [26] R. W. Jaszewski, H. Schift, J. Gobrecht, and P. Smith, “Hot embossing in polymers as a direct way to pattern resist”, Microelectron. Eng. 41/42 (1998) 575-578.
    [27] H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography”, J. Vac. Sci. Technol. B 16 (1998) 3926-3928.
    [28] T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis”, J. Vac. Sci. Technol. B 18(2000) 3572-3575.
    [29] X. Sun, L. Zhuang, W. Zhang, and S. Y. Chou, “Multilayer resist methods for nanoimprint lithography on nonflat surfaces”, J. Vac. Sci. Technol. B 16 (1998) 3922-3925.
    [30] B. Heidari, I. Maximov, and L. Montelius, “Nanoimprint lithography at the 6 in. wafer scale”, J. Vac. Sci. Technol. B 18 (2000) 3557-3560.
    [31] L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, and A. F. Yee, “Nanoimprinting over topography and multilayer three-dimensional printing”, J. Vac. Sci. Technol. B 20 (2002) 2881-2886.
    [32] D. L. White and O. R. Wood II, “Novel alignment system for imprint lithography”, J. Vac. Sci. Technol. B 18 (2000) 3552-3556.
    [33] W. Zhang and S. Y. Chou, “Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers”, Appl. Phys. Lett. 79 (2001) 845-847.
    [34] M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, “Low temperature nanoimprint lithography using silicon nitride molds”, Microelectron. Eng. 57-58 (2001) 367-373.
    [35] M. Li, L. Chen, W. Zhang and S. Y Chou, “Pattern transfer fidelity of nanoimprint lithography on six-inch wafers”, Nanotechnology 14 (2003) 33–36.
    [36] L. Guo, P. R. Krauss, and S. Y. Chou, “Nanoscale silicon field effect transistors fabricated using imprint lithography”, Appl. Phys. Lett. 71 (1997) 1881-1883.
    [37] I. Martini, D. Eisert, M. Kamp, L. Worschech, A. Forchel, and J. Koeth, “Quantum point contacts fabricated by nanoimprint lithography”, Appl. Phys. Lett. 77 (2000) 2237-2239.
    [38] I. Martini, M. Kamp, F. Fischer, L. Worschech, J. Koeth, and A. Forchel, “Fabrication of quantum point contacts and quantum dots by imprint lithography”, Microelectron. Eng. 57-58 (2001) 397-403.
    [39] I. Martini, J. Dechow, M. Kamp, A. Forchel, and J. Koeth, “GaAs field effect transistors fabricated by imprint lithography”, Microelectron. Eng. 60 (2002) 451-455.
    [40] M. Austin and S. Y. Chou, “Fabrication of nanocontacts for molecular devices using nanoimprint lithography”, J. Vac. Sci. Technol. B 20 (2002) 665–667.
    [41] W. Zhang and S. Y. Chou, “Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels”, Appl. Phys. Lett. 83 (2003) 1632-1634.
    [42] Z. Yu, S. J. Schablitsky, and S. Y. Chou, “Nanoscale GaAs metal–semiconductor–metal photodetectors fabricated using nanoimprint lithography”, Appl. Phys. Lett. 74 (1999) 2381-2383.
    [43] J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography”, J. Vac. Sci. Technol. B 17 (1999) 2957-2960.
    [44] Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography”, Appl. Phys. Lett. 77 (2000) 927-929.
    [45] L. J. Guo, X. Cheng and C. Y. Chao, “Fabrication of photonic nanostructures in nonlinear optical polymers”, J. Mod. Opt. 49 (2002) 663-673.
    [46] J. Wang, X. Sun, L. Chen, and S. Y. Chou, “Direct nanoimprint of submicron organic light-emitting structures”, Appl. Phys. Lett. 75 (1999) 2767-2769.
    [47] J. Seekamp, S. Zankovych, A. H. Helfer, P. Maury, C. M. S. Torres, G. Bottger, C. Liguda, M. Eich, B. Heidari, L. Montelius and J. Ahopelto, “Nanoimprinted passive optical devices”, Nanotechnology 13 (2002) 581–586.
    [48] C. C. Cedeno, J. Seekamp, A. P. Kam, T. Hoffmann, S. Zankovych, C.M. S. Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, and J. Ahopelto, “Nanoimprint lithography for organic electronics”, Microelectron. Eng. 61–62 (2002) 25-31.
    [49] B. D. Terris, H. J.Mamin, M. E. Best, J. A. Logan, D. Rugar,and S. A. Rishton, “Nanoscale replication for scanning probe data storage”, Appl. Phys. Lett. 69 (1996) 4262–4264.
    [50] L. Montelius, B. Heidari, M. Graczyk, I. Maximov, E. L. Sarwe, and T. G. I. Ling, “Nanoimprint- and UV-lithography: Mix&Match process for fabrication of interdigitated nanobiosensors”, Microelectron. Eng. 53 (2000) 521-524.
    [51] C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance”, Appl. Phys. Lett. 83 (2003) 1527–1529.
    [52] H. Cao , Z. Yu, J. Wang, J. O. Tegenfeldt, R. H. Austin, E. Chen, W. Wu and S. Y. Chou, “Fabrication of 10 nm enclosed nanofluidic channels”, Appl. Phys. Lett. 81 (20023) 174–176.
    [53] H. Cao, J. O. Tegenfeldt, R. H. Austin, and S. Y. Chou, “Gradient nanostructures for interfacing microfluidics and nanofluidics”, Appl. Phys. Lett. 81 (2002) 3058–3060.
    [54] V. Studer , A. Pepin , Y. Chen , and A. Ajdari, “Fabrication of microfluidic devices for AC electrokinetic fluid pumping”, Microelectron. Eng. 61-62 (2002) 915-920.
    [55] S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, “Nanoimprint lithography: challenges and prospects”, Nanotechnology 12 (2001) 91–95.
    [56] F. Gottschalch, T. Hoffmann, C. M. S. Torres, H. Schulz, and H. C. Scheer, “Polymer issues in nanoimprinting technique”, Solid-State Electronics 43 (1999) 1079-1083.
    [57] S. Y. Chou and L. Zhuang, “Lithographically induced/self-assembly of periodic polymer micropillar arrays”, J. Vac. Sci. Technol. B 16 (1999) 3197-3202.
    [58] S. Y. Chou, L. Zhuang, and L. Guo, “Lithographically induced self-construction of polymer microstructures for resistless patterning”, Appl. Phys. Lett. 75 (1999) 1004–1006.
    [59] E. Schaffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrically induced structure formation and pattern transfer”, NATURE 403 (2000) 874-877.
    [60] M. Mooney, “A theory of large elastic deformation”, J. Appl. Phys. Vol. 11 (1940) 582-592.
    [61] R. S. Rivlin, “Large elastic deformation of isotropic materials VI. Further results in the theory of torsion, shear and flexure”, Philos. Trans. R. Soc. London, Vol. 242 (1949) 173-195.
    [62] Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, M. Endo, S. Irie, K. Nakagawa, and M. Sasago, “Study of the resist deformation in nanoimprint lithography”, J. Vac. Sci. Technol. B 19 (2001) 2811-2815.
    [63] D. J. Charlton, J. Yang, and K. K. Teh, “A review of methods to characterize rubber elastic behavior for use in finite element analysis”, Rubber Chem. & Technol., Vol. 67 (1994) 481-503.
    [64] F. Hurtado-Laguna and J. V. Aleman, “Longitudinal volume viscosity of polymethyl methacrylate (PMMA)”, J. Polym. Sci., Part A: Polym. Chem. Vol. 26 (1988) 2631-2649.
    [65] Y. J. Juang, L. J. Lee, and K. W. Koelling, “Hot embossing in microfabrication. Part II: Rheological Characterization and Process Analysis”, Polym. Eng. Sci. Vol. 42, No. 3 (2002) 551-566.
    [66] H. D. Rowland and W. P. King, “Polymer deformation and filling modes during microembossing”, J. Micromech. Micoeng. Vol. 14 (2004) 1625-1632.
    [67] C.W. Hirt and B.D. Nichols, “Volume of Fluid (VOF) method for the dynamics of free boundaries”, J. Comput. Phys., Vol. 39 (1981) 201-225.
    [68] Huerta A., Liu, W.K., “Viscous Flow with Large Free Surface Motion”, Comput. Meth. Appl. Mech. Engrg., Vol. 69 (1988) 277-324.
    [69] Ashgriz, N., Barbat, T., Wang, G., “A computational Lagrangian-Eulerian advection remap for free surface flows”, Int. J. Numer. Methods Fluids, Vol. 44 (2004) 1-32.
    [70] R. Puers, “Capacitive sensors: how and when to use them”, Sensors & Actuators A, Vol.37-38 (1993) 93-105.
    [71] R. K. Pearson, “Microstructural effects in capacitive composition measurements”, IEEE Trans. Instrum. & Meas., Vol. 39, No. 2 (1990) 421-423.
    [72] D. D. Denton, C. N. Ho, and S. He, “A solid-state relative humidity measurement system”, IEEE Trans. Instrum. & Meas., Vol. 39, No. 3 (1990) 508-510.
    [73] L. K. Baxter, Capacitive sensors design & applications, IEEE Press (1997).
    [74] A. A. Arkadan, S. Subramaniam-Sivanesan, and O. Douedari, “Design optimization of a capacitive transducer for displacement measurement”, IEEE Trans. Magn., Vol. 35, No. 3 (1999) 1869-1872.
    [75] F. Restagno, J. Crassous, E. Charlaix, and M. Monchanin, “A new capacitive sensor for displacement measurement in a surface-force apparatus”, Meas. Sci. Technol. 12 (2001) 16–22.
    [76] D. H. Ziger, “In situ capacitance studies of thin polymer films during compressed fluid extraction”, J. Mater. Res. 2 (1987) 884-894.
    [77] A. Somerville, I. Evans, and T. York, “Preliminary studies of planar capacitance tomography”, 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, April 14-17, 1999.
    [78] K. S. Patel, P. A. Kohl, and S. A. Bidstrup-Allen, “Three-dimensional dielectric characterization of polymer films”, J. Appli. Poly. Sci. 80 (2001) 2328–2334.
    [79] K. Kasten, J. Amelung, and W. Mokwa, “CMOS-compatible capacitive high temperature pressure sensors”, Sensors and Actuators A 85 (2000) 147–152.
    [80] K. Kasten, N. Kordas, H. Kappert, and W. Mokwa, “Capacitive pressure sensor with monolithically integrated CMOS readout circuit for high temperature applications”, Sensors and Actuators A 97-98 (2002) 83–87.
    [81] J. C. Patra, “An artificial neural network-based smart capacitive pressure sensor”, Measurement 22 (1997) 113–121.
    [82] J. C. Patra, and A. van den Bos, “Auto-calibration and -compensation of a capacitive pressure sensor using multilayer perceptrons”, ISA Trans. 39 (2000) 175–190.
    [83] C. Ghidini, D. Marioli, E. Sardini and A. Taroni, “A 15 ppm resolution measurement system for capacitance transducers”, Meas. Sci. Technol. 7 (1996) 1787–1792.
    [84] D. M. G. Preethichandra, and Katsunori Shida, “A simple interface circuit to measure very small capacitance changes in capacitive sensors”, IEEE Trans. Instrum. & Meas., Vol. 50, No. 6 (2001) 1583-1586.
    [85] G. Brasseur, “Design rules for robust capacitive sensors”, IEEE Trans. Instrum. & Meas., Vol. 50, No. 6 (2001) 1261-1265.
    [86] H. X. Wang, W. L. Yin, W. Q. Yang, and M. S. Beck, “Optimum design of segmented capacitance sensing array for multi-phase interface measurement”, Meas. Sci. Technol. 7 (1996) 79–86.
    [87] H. X. Wang and W. L. Yin, “A study of the detection mechanism and the reconstruction algorithm for multi-phase interface level measurement”, Meas. Sci. Technol. 8 (1997) 1289–1294.
    [88] F. Caiazzo, G. S. Palazzo, and R. Pasquino, “The influence of working parameters on the response of a capacitive sensor used in-process for the measurement of tool wear”, Inter. J. Mach. Tools & Manuf. 38 (1998) 871–879.
    [89] M. H. W. Bonse, C. Mul, and J.W. Spronck, “Finite-element modeling as a tool for designing capacitive position sensors”, Sensors and Actuators A 46-47 (1995) 266-269.
    [90] E. Kim, Y. Xia, and G. M. Whitesides , “Polymer microstructures formed by moulding in capillaries”, Nature 376 (1995) 581-584.
    [91] J. Taniguchi, Y. Tokano, I. Miyamoto, M. Komuro, and H. Hiroshima, “Diamond nanoimprint lithography”, Nanotechnology 13 (2002) 592-596.
    [92] L. J. Guo, “Recent progress in nanoimprint technology and its applications”, J. Phys. D: Appl. Phys. 37 (2004) R123–R141.
    [93] M. T. Li, 2003 PhD Thesis Princeton University, Princeton.
    [94] I. Maximov, E-L Sarwe, M. Beck, K. Deppert, M. Graczyk, M. H. Magnusson and L. Montelius, “Fabrication of Si-based nanoimprint stamps with sub-20 nm Features”, Microelectron. Eng. 61–62 (2002) 449–454.
    [95] K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C.M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting”, Microelectron. Eng. 61–62 (2002) 393-398.
    [96] S. W. Pang, T. Tamamura, M. Nakao, A. Ozawa, and H. Masuda, “Direct nano-printing on Al substrate using a SiC mold”, J. Vac. Sci. Technol. B 16 (1998) 1145-1149.
    [97] B. Heidari, I. Maximov, E-L Sarwe, and L. Montelius, “Large scale nanolithography using nanoimprint lithography”, J. Vac. Sci. Technol. B 17 (1999) 2961-2964.
    [98] Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold”, J. Vac. Sci. Technol. B 20 (2002) 2867-2871.
    [99] S. K. Murad, M. Rahman, N. Johnson, S. Thoms, S. P. Beaumont, and C. D. W. Wilkinson, “Dry etching damage in III–V semiconductors”, J. Vac. Sci. Technol. B 14 (1996) 3658-3662.
    [100] M. Rahman, L. G. Deng, C. D. W. Wilkinson, and J. A. van den Berg, “Studies of damage in low-power reactive-ion etching of III–V semiconductors”, J. Appl. Phys. Vol. 89, No. 4 (2001) 2096-2108.
    [101] U. Srinivasan, M. R. Houston, R. T. Howe, “Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines”, J. Microelectromech. Syst., Vol. 7, No. 2 (1998) 252-260.
    [102] M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T.G.I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography”, Microelectron. Eng. 61–62 (2002) 441-448.
    [103] W. Kern, “Purifying Si and SiO2 surfaces with hydrogen peroxide”, Semiconductor International Vol. 7 (1984) 94-99.
    [104] S. P. Kounaves, W. Deng, P. R. Hallock, G. T. A. Kovacs, and C. W. Storment, “Iridium-based ultramicroelectrode array fabricated by microlithography”, Anal. Chem., Vol. 66, No. 3 (1994) 418-423.
    [105] C. Belmont, M.-L. Tercier, J. Buffle, G. C. Fiaccabrino, and M. Koudelka-Hep, “Mercury-plated iridium-based microelectrode arrays for trace metals detection by voltammetry: optimum conditions and reliability”, Analytica Chimica Acta 329 (1996) 203-214.
    [106] R. Feeney and S. P. Kounaves, “Microfabricated ultramicroelectrode arrays: developments, advances, and applications in Environmental Analysis”, Electroanalysis Vol. 7, No. 9 (2000) 677-684.
    [107] R.W. Jaszewski, H. Schift, J. Gobrecht, and P. Smith, “Hot embossing in polymers as a direct way to pattern resist”, Microelectron. Eng. 41/42 (1998) 575-578
    [108] H.-C. Scheer, H. Schulz, T. Hoffmann, and C.M. Sotomayor Torres, “Problems of the nanoimprinting technique for nanometer scale pattern definition”, J. Vac. Sci. Technol. B16 (1998) 3917-3921.
    [109] H. Schift, C. David, J. Gobrecht, A. D’Amore, D. Simoneta, W. Kaiser, and M. Gabriel, “Quantitative analysis of the molding of nanostructures”, J. Vac. Sci. Technol. B18 (2000) 3564-3568.
    [110] Y. Hirai, S. Yoshida, and N. Takagi, “Defect analysis in thermal nanoimprint lithography”, J. Vac. Sci. Technol. B21 (2003) 2765-2770.
    [111] Y. J. Juang, L. J. Lee, and K. W. Koelling, “Hot embossing in microfabrication. Part I: Experimental”, Polym. Eng. Sci. Vol. 42, No. 3 (2002) 539-550.
    [112] S. Kiyohara, M. Fujiwara, F. Matsubayashi, and K. Mori, “Organic light-emitting microdevices fabricated by nanoimprinting technology using diamond molds”, Jpn. J. Appl. Phys. Vol. 44, No. 6A (2005) 3686-3690.
    [113] B. E. Noltingk, “A novel proximity gauge”, J. Sci. Instrum., Vol. 2, No. 2 (1969) 356–360.
    [114] R. C. Luo and Z. Chen, “Modeling and implementation of an innovative micro proximity sensor using micromachining technology”, in Proc. 1993 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Yokohama, Japan, July 26–30, (1993) 1709-1716.
    [115] Z. Chen and R. C. Luo, “Design and implementation of capacitive proximity sensor using microelectromechanical systems technology”, IEEE Trans. Industr. Electron., Vol. 45, No. 6 (1998) 886-894.
    [116] S. Limanond, J. Si, and Y. L. Tseng, “Production data based optimal etch time control design for a reactive ion etching process”, IEEE Trans. Semiconduct. Manufact., Vol. 12, No. 1 (1999) 139-146.
    [117] S. Hong, G. May, and D. Park, “Neural network modeling of reactive ion etch using optical emission spectroscopy data”, IEEE Trans. Semiconduct. Manufact., Vol. 16, No. 4 (2003) 598-608.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE