研究生: |
陳肯立 Ken-Li Chen |
---|---|
論文名稱: |
在洗牌交換網路上的內嵌環狀網路 Embedding Rings on Shuffle-Unshuffle-Exchange Networks |
指導教授: |
王炳豐 博士
Dr. Biing-Feng Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 內嵌網路 、內嵌環狀網路 、洗牌交換網路 |
外文關鍵詞: | embedding network, Embedding rings, shuffle-unshuffle-exchange-network, SUEN |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在網路上找尋是否嵌含環狀網路,在網路拓樸上是個很基本的問題。已知有許多網路在天生的結構上就含有環狀網路,如立方體網路、網格網路、Be Bruijn 網路、遞迴網路、蝴蝶網路、洗牌-交換網路。然而在洗牌-交換網路上最大嵌含的環狀網路,至今仍然沒有擴張一的答案。本篇論文的主旨,是在洗牌交換網路上找尋嵌含的環狀網路,在本篇提供了一個有效率的演算法來找尋嵌含的環狀網路,在N個處理器的洗牌-交換網路上我們可以找到的最大環狀網路為Q(N/log N)。除此之外,本篇論文提供在洗牌交換網路上尋找大小為k的嵌含環狀網路,如果k <= N/4log N,可以找到最大誤差在 2 lglglgN 之內的嵌入環。
The shuffle-unshuffle-exchange-network (SUEN) was introduced by Stone. It is one of the famous interconnection networks in the filed of parallel processing. In this thesis, we address the problem of embedding rings to SUEN with dilation 1 and load 1. Currently, the size of the largest ring that can be embedded with load 1 and dilation 1 to a SUEN of N processors is still an open problem. We show that given a SUEN of N processors, a ring of theta(N/log N) processors can be imbedded to it with load 1 and dilation 1. Besides, we further show that given any integer k£N/4log N, a ring of k’ processors can be imbedded to a SUEN of N processors with load 1 and dilation 1, where k-2lglglgN<= k’<= k+2lglglgN.
[1] S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989
[2] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, “ Efficient Embedding of Trees in Hypercubes, ” SIAM Journal on Computing, vol. 21, no. 1, pp.151-162, 1992
[3] S. Bettayeb, Z. Miller, and I. Hal Sudborough, “ Embedding Grid into Hypercubes,” Proceedings 3rd Aegean Workshop on Computing, AWOC 1988, Lecture Notes in Computer Science, Springer Verlag, pp.201-211.
[4] M. Y. Chan and S. J. Lee, “ Distributed Fault-Tolerant Embeddings of Rings in Hypercubes,” Journal of Parallel and Distributed Computing, vol.11, pp. 61-71, 1991
[5] J. A. Ellis, “Embedding Rectangular Grids into Square Grids, ” Proceedings of Aegean Workshop on Computing, Corfu, Greece, 1988
[6] Ronald Fernandes, Donald K. Friesen and Arkady Kanevsky, “ Embedding Rings in Recursive Networks,” IEEE Symposium on Parallel and Distributed Processing – Proceedings, Oct 26-29 1994.
[7] R. Feldmann, P. Mysliwietz, and S. Tschöke,” The Shuffle Exchange Network Has a Hamiltonian Path,” Mathematical Systems Theory, vol. 29, pp. 471-485, 1996
[8] R. Feldmann and W. Unger, “ The Cube-Connected Cycles Network Is a Subgraph of the Butterfly Network,” Parallel Processing Letters, vol. 2, pp. 13-19, 1992
[9] Ching-Tien Ho and S. Lennart Johnson, “ On the Embedding of Arbitrary Meshes in Boolean Cubes with Expansion Two Dilation Two”, Proceedings 1987 International Conference on Parallel Processing, pp. 188-191