簡易檢索 / 詳目顯示

研究生: 陳昭宇
論文名稱: 漸擴與等截面積矩形微流道之沸騰熱傳研究
指導教授: 潘欽
Chin Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 漸擴微流道沸騰熱傳壓降分析熱傳分析
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討不同角度的漸擴與等截面積矩形微流道之沸騰熱傳差異,包括熱傳係數、壓降和流譜與加熱功率、體積流率、水力直徑和不同漸擴角度的關係。在沸騰發生之前,熱通率跟熱傳遞係數會隨流量增加而增加;在沸騰發生後,熱通率跟熱傳遞係數會有顯著上升現象,但流量對於熱通率與熱傳遞係數沒有明顯的影響。單相流動時,壓降會隨溫度上升而下降,這是由於液體的黏滯係數隨溫度上升而下降。在雙相流動時,壓降明顯的隨溫度上升而增加,這是因為空泡分率增加所導致的。流譜的觀察顯示,長泰勒氣泡流、環狀流和蛇型流為主要流譜型態,因此本研究研判微液膜的蒸發可能是微通道沸騰的主要熱傳機制。
    本研究最後比較不同角度漸擴微流道與矩形等截面積直管之沸騰熱傳差異。結果顯示1o的漸擴微流道之單相壓降比直管、2[o]、3[o]高,但雙相壓降則是直管最大。研究結果也顯示漸擴3[o]之漸擴微流道與直管微流道的熱傳能力皆優於漸擴1[o]及2[o] ,其中又以3[o]的熱傳遞係數最高。


    目錄 頁次 摘要 I 誌謝 II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 沸騰熱傳分析 3 1.2.2不穩定性分析 4 1.2.3沸騰雙相流動型態 5 1.2.4壓降分析 6 1.2.5其他相關文獻 7 1.3 研究目的 7 1.4 論文內容與架構 8 第二章 實驗設計與步驟 9 2.1實驗環路及相關設備 9 2.1.1 高效能層析幫浦 10 2.1.2 測試段 10 2.1.3 加熱器模組 12 2.1.4 加熱電源供應器 12 2.1.5 濾膜(Filters) 13 2.1.6 精密電子天平(Precision Electronic Balances) 13 2.2 實驗量測儀器 13 2.2.1 溫度量測 14 2.2.2 壓力量測 15 2.2.3 流量控制與量測 16 2.2.4 YOKOGAWA MX100數據擷取系統 16 2.3 影像擷取與處理設備 16 2.3.1 高速攝影系統 16 2.3.2 可變焦顯微放大觀察系統 17 2.4 實驗方法與步驟 17 2.4.1 實驗方法 17 2.4.2 實驗流程 18 2.5 熱傳分析計算 20 第三章 矽質微通道製作流程 23 3.1微流道製作過程 23 3.1.1黃光微影技術(Photolithography) 23 3.1.2深層反應性離子蝕刻(Deep Reactive Ion Etch) 23 3.1.3雷射切割(Laser Cutting) 24 3.1.4氫氟酸蝕刻(HF Etch) 24 3.1.5陽極接合(Anodic bonding) 25 3.2微通道製程 25 3.2.1光罩設計 25 3.2.2 微流道製作過程 26 3.3 製程結果與討論 27 3.3.1 SEM圖片 27 3.3.2 粗糙度 31 第四章 結果與討論 44 4.1 雙相流動型態說明 44 4.2 熱傳分析 51 4.3壓降分析 63 4.4 討論 65 第五章 結論與建議 67 5.1 結論: 67 5.2建議: 68 參考文獻 69 圖目錄 圖2-1實驗環路示意圖 10 圖2-2漸擴角度1[o] 11 圖2-3漸擴角度2[o] 11 圖2-4漸擴角度3[o] 11 圖2-5直管(水力直徑與漸擴1[o]相同) 11 圖2-7加熱器模組示意圖 12 圖2-8 T-type熱電偶延伸至儲水槽示意圖[22] 15 圖2-9微熱電偶接和器示意圖[22] 15 圖3-1微流道製程圖 27 圖3-2 SEM剖面圖(漸擴角1[o],深68.34um) 29 圖3-3 SEM剖面圖(漸擴角2[o],深67.03um) 30 圖3-4 SEM剖面圖(漸擴角3[o],深67.03um) 30 圖3-5 SEM剖面圖(直管,深67.03um) 31 圖3-6 AFM(實驗前)(漸擴角1[o]微流道量測出的底部表面粗糙度) 33 圖3-7AFM(實驗前)(漸擴角1[o]微流道量測出的底部表面剖面圖) 34 圖3-8 AFM(實驗前)(漸擴角2[o]微流道量測出的底部表面粗糙度) 34 圖3-9AFM(實驗前)(漸擴角2[o]微流道量測出的底部表面剖面圖) 35 圖3-10 AFM(實驗前)(漸擴角3[o]微流道量測出的底部表面粗糙度) 35 圖3-11 AFM(實驗前)(漸擴角3[o]微流道量測出的底部表面剖面圖) 36 圖3-12 AFM(實驗前)(直管微流道量測出的底部表面粗糙度) 36 圖3-13 AFM(實驗前)(直管微流道量測出的底部表面剖面圖) 37 圖3-14 AFM(實驗前)(漸擴角1[o]微流道量測出的側壁表面粗糙度) 37 圖3-15 AFM(實驗前)(漸擴角1[o]微流道量測出的側壁表面剖面圖) 38 圖3-16 AFM(實驗前)(漸擴角2[o]微流道量測出的側壁表面粗糙度) 38 圖3-17 AFM(實驗前)(漸擴角2[o]微流道量測出的側壁表面剖面圖) 39 圖3-18 AFM(實驗前)(漸擴角3[o]微流道量測出的側壁表面粗糙度) 39 圖3-19 AFM(實驗前)(漸擴角3[o]微流道量測出的側壁表面剖面圖) 40 圖3-20AFM(實驗前)(直管微流道量測出的側壁表面粗糙度) 40 圖3-21 AFM(實驗前)(直管微流道量測出的側壁表面剖面圖) 41 圖3-22 AFM(實驗後)(漸擴角1[o]微流道量測出的底部表面粗糙度) 41 圖3-23AFM(實驗後)(漸擴角1[o]微流道量測出的底部表面剖面圖) 42 圖3-24AFM(實驗後)(漸擴角1[o]微流道量測出的側壁表面粗糙度) 42 圖3-25 AFM(實驗後)(漸擴角1[o]微流道量測出的側壁表面剖面圖) 43 圖4-1氣泡-長型彈狀流 45 圖4-2蛇形流 46 圖4-3環狀流 47 圖4-4 49 圖4-5 50 圖4-6 50 圖4-7 51 圖4-8不同漸擴角度與直管微流道壁溫和熱通率關係 60 圖4-9不同漸擴角度與直管微流道壁溫和熱傳遞係數關係 60 圖4-10不同漸擴角度與直管微流道熱通率與熱傳遞係數關係 61 圖4-11不同漸擴角度與直管微流道壁溫與壓降關係 61 圖4-12不同漸擴角度與直管微流道熱通率與壓降關係 62 圖4-13不同漸擴角度與直管微流道單相流實驗量測壓降與預測壓降關係 62 表目錄 表3.1漸擴微流道與等截面積幾何形狀之尺寸 29 表3.2 AFM 操作條件 32 表3.3不同漸擴角度與直管微流道AFM量測出的底部表面粗糙度 32 表3.4不同漸擴角度與直管微流道AFM量測出的側壁表面粗糙度 33 表2.1(a)漸擴角1[o]通道熱通量與溫度、壓力關係 52 表2.1(b)漸擴角1[o]通道熱通量與溫度、壓力關係 53 表2.1(c)漸擴角1[o]通道熱通量與溫度、壓力關係 53 表2.2(a)漸擴角2[o]通道熱通量與溫度、壓力關係 54 表2.2(b)漸擴角2[o]通道熱通量與溫度、壓力關係 55 表2.2(c)漸擴角2[o]通道熱通量與溫度、壓力關係 55 表2.3(a)漸擴角3[o]通道熱通量與溫度、壓力關係 56 表2.3(b)漸擴角3[o]通道熱通量與溫度、壓力關係 56 表2.3(c)漸擴角3[o]通道熱通量與溫度、壓力關係 57 表2.4(a)直管(水力直徑與漸擴1[o]相同)通道熱通量與溫度、壓力關係 58 表2.4(b)直管(水力直徑與漸擴1[o]相同)通道熱通量與溫度、壓力關係 58 表2.4(c)直管(水力直徑與漸擴1[o]相同)通道熱通量與溫度、壓力關係 59

    參考文獻

    [1] R. Yun, J.H. Heo, Y. Kin, Evaporative heat transfer and pressure drop of R410A in microchannels, International Journal of Referigeration, 29 (2006) 92-100.
    [2] T.H. Yen, M. Shoji, F. Takemura, Y. Suzuki, N. Kassgi, Visualization of convective boiling heat transfer in single microchannels with different shaped cross-sections, International Journal of Heat and Mass Transfer, 49 (2006) 3884-3894.
    [3] S.G. Kandlikar,Nucleation characteristics and stability considerations during flow boiling in microchannels, Experimental Thermal and Fluid Science, 30 (2006) 441-447.
    [4] S.G. Kandlikar, High flux heat removal with microchannels - A roadmap of challenges and opportunities, International Conference on Microchannels and Minichannels, Toronto, Ontario, Canada, June 13-15, 2005.
    [5] A.E. Schael, M. Kind, Flow pattern and heat transfer characteristics during flow boiling CO2 in a horizontal micro fin tube and comparison with smooth tube data, International Journal of Referigeration, 28 (2005) 1186-1195.
    [6] J. Xu, Experimental study on gas-liquid two – phase flow regimes in rectangular channels with mini gaps, International Journal of Heat and Fluid Flow, 20 (1999) 422-428.
    [7] C. Huh, M.H. Kin, An experimental investigation of flow boiling in an asymmetrically heated rectangular microchannel, Experimental Thermal and Fluid Science, 30 (2006) 775-784.
    [8] H.Y. Wu, P. Cheng, Boiling instability in parallel silicon microchannels at different heat flux, International Journal of Heat and Mass Transfer, 47 (2004) 3631-3641.
    [9] J.W. Coleman, P.E. Krause, Two phase pressure losses of R134a in microchannel tube headers with large free flow area ratios, Experimental Thermal and Fluid Science, 28 (2004) 123-130.
    [10] L. Wojtan, R. Revellin, J.R. Thome, Investigation of saturated critical heat flux in a single, uniformly heated microchannel, Experimental Thermal and Fluid Science, 30 (2006) 765-774.
    [11] P.C. Lee, F.G. Tseng, C. Pan, Bubble dynamics in microchannels. Part I. Single microchannel, International Journal of Heat and Mass Transfer, 47 (2004) 5575-5589.
    [12] G. Hetsroni, A. Mosyak, Z. Segal, Nonuniform Temperature Microchannels, IEEE Transactions on Components and Packing Technologies, 24 (2001) 16-23.
    [13] S.G. Kandlikar, Heat Transfer mechanisms during flow boiling in microchannels, First International Conference on Microchannels and Minichannels, Rochester, New York, USA, April 24-25, 2003, pp.33-46.
    [14] M.E. Stinke, S.G. Kandlikar, Flow boiling and pressure drop in parallel flow microchannels, First Intternational Conference on Microchannels and Minichannels, Rochester, New York, USA, April 24-25, 2003, 567-579.
    [15] R. Revellin, J.R. Thome, Experimental investigation of R-134a and R-245fa two-phase flow in rent flow conditions, International Journal of Heat and Fluid Flow, 28 (2007) 63-71.
    [16] P. Hrnjak, X. Tu, Single phase pressure drop in microchannels, International Journal of Heat and Fluid Flow, 28 (2007) 2-14.
    [17] S.C. Kelley, G. A. Deluga, and W. H. Smyrl, Minature fuel cells fabricated on silicon substrates, AIChE Journal, 48 (2002) 1071-1082.
    [18] F.M. White, Fluid Mechanics, p.356, McGraw-Hill Book Co.,New York,1979.
    [19] J.P. Hartnett and M. Kostic, Heat transfer to Newtonian and non- Newtonian fluids in rectangular ducts, Advances in Heat Transfer, 19 (1989) 247-356.
    [20] K.S. Yang, I.Y. Chen, B.Y. Shew, and C.C. Wang, A study of the fabrication and analysis of micro diffuser/nozzles,in:Proccedings of the First International Conference on Microchannels and Minichannels, Rochester, New York, USA, April 21-23 , 2003, pp. 781-786.
    [21] D.B. Tuckerman, R. F. W. Pease, High Performance heat sinking for VLSI, IEEE Electronic Device letters, EDL- 2 (1981) 126-129.
    [22] 李柏蒼, 單管矽質微通道沸騰熱傳之探討, 碩士論文, 清華大學工程與系統科學研究所, 新竹市, 民國九十二年.
    [23] 盧俊庭, 漸縮漸擴微流道沸騰熱傳研究, 碩士論文, 清華大學工程與系統科學研究所, 新竹市, 民國九十四年.
    [24] 林坤成, 漸擴微流道角度效應之沸騰熱傳研究, 碩士論文, 清華大學工程與系統科學研究所,新竹市, 民國九十五年.
    [25] 潘欽, 沸騰熱傳與雙相流, 初版, 俊傑書局股份有限公司, 台北市, 民國九十年, 485-512.
    [26] F. P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, Fourth ed., John Wiley and Sons, Inc., New York, 1996, Chapter 9.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE