研究生: |
侯鈺玲 Hou, YU-Ling |
---|---|
論文名稱: |
奈米碳管海棉氣體檢測器的製作與特性研究 The fabrication and characterization of a carbon nanotube sponge vapor sensor |
指導教授: | 張士欽 |
口試委員: |
金重勳
徐文光 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 奈米碳管 、氣體檢測器 |
外文關鍵詞: | carbon nanotube, gas sensor |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管海棉以一種創新的方法去製成有機氣體檢測器並加以利用進行研究。奈米碳管海棉以濃硫酸和硝酸加以酸化並將其加入聚乙烯醇水溶液。當將其碳管液放入冰箱中結冰後,在低壓中利用昇華的方式移除冰,然後遺留下來的便為奈米碳管海棉。以兩塊銅片為電極去放在海棉的兩側做為一個有機氣體檢測器。隨著有機氣體的吸附和脫附造成檢測器的電阻改變,並加以記錄。發現以奈米碳管海棉做成的檢測器對於丙酮和乙醇是展現相當高的響應。
為了縮短檢測器的回復時間,是利用電流去加熱碳管海棉檢測器和增加氣體的脫附速率。當一個相當高的電壓是被施加時,電阻可以在五分鐘內回復並縮短回復時間。而且在經過過電加熱之後,對於碳管海棉的結構並沒有太大的改變。另外在相對濕度的測試中,發現飽和最大電阻值和靈敏度是隨著相對濕度的增加呈現線性的增加。
The application of the carbon nanotube sponges made by an innovative process as organic vapor sensors was studied. Carbon nanotubes were made hydrophilic by acid treatment and then dispersed in water with PVA. After frozen, the ice in the frozen solid was removed by sublimation without melting under low pressure. Then, what left is a carbon nanotube sponge. Copper sheet electrodes were attached on the two opposite sides of the sponge to form an organic vapor sensor. The change of electric resistance of the sponge with adsorption and desorption of organic vapors were investigated. It is found that the carbon nanotube sponge sensor exhibiting high and rapid response to acetone and ethanol vapors.
To shorten the recovery time of the sensor, electric current was applied to heat the CNT sensor and so increase the rate of gas desorption. When a relatively high voltage is applied, the resistance can be recovered in 5 minutes and shorten the recovery time. And then no much difference between the spectra measured before and after the test were found. In the relative humidity test, the saturated maximum resistance and the sensitivity increase linearly with increasing relative humidity from 27 % to 85 %.
1.Iijima, S., HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature, 1991. 354(6348): p. 56-58.
2.Saito, R., et al., ELECTRONIC-STRUCTURE OF CHIRAL GRAPHENE TUBULES. Applied Physics Letters, 1992. 60(18): p. 2204-2206.
3.Kong, J., et al., Nanotube molecular wires as chemical sensors. Science, 2000. 287(5453): p. 622-625.
4.Jung, H.Y., et al., Chemical sensors for sensing gas adsorbed on the inner surface of carbon nanotube channels. Applied Physics Letters, 2007. 90(15).
5.Varghese, O.K., et al., Gas sensing characteristics of multi-wall carbon nanotubes. Sensors and Actuators B-Chemical, 2001. 81(1): p. 32-41.
6.Li, J., et al., Carbon nanotube sensors for gas and organic vapor detection. Nano Letters, 2003. 3(7): p. 929-933.
7.Ahn, C.C., et al., Hydrogen desorption and adsorption measurements on graphite nanofibers. Applied Physics Letters, 1998. 73(23): p. 3378-3380.
8.Dillon, A.C., et al., Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997. 386(6623): p. 377-379.
9.Zhao, J.J., et al., Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 2002. 13(2): p. 195-200.
10.Robinson JA, Snow ES, Badescu SC, Reinecke TL, Perkins FK (2006) Role of defects in single-walled carbon nanotube chemical sensors. 1747-1751 p.
11.Lee, K., et al., Gas sensing properties of single-wall carbon nanotubes dispersed with dimethylformamide. Sensors and Actuators B-Chemical, 2008. 135(1): p. 214-218.
12.Jang, Y.T., et al., A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes. Sensors and Actuators B-Chemical, 2004. 99(1): p. 118-122.
13.Cho, W.S., et al., Patterned multiwall carbon nanotube films as materials of NO2 gas sensors. Sensors and Actuators B-Chemical, 2006. 119(1): p. 180-185.
14.Kong, J., M.G. Chapline, and H.J. Dai, Functionalized carbon nanotubes for molecular hydrogen sensors. Advanced Materials, 2001. 13(18): p. 1384-1386.
15.Suehiro, J., G.B. Zhou, and M. Hara, Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. Journal of Physics D-Applied Physics, 2003. 36(21): p. L109-L114.
16.Cantalini, C., et al., NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition. Sensors and Actuators B-Chemical, 2003. 93(1-3): p. 333-337.
17.Bekyarova, E., et al., Chemically functionalized single-walled carbon nanotubes as ammonia sensors. Journal of Physical Chemistry B, 2004. 108(51): p. 19717-19720.
18.Wang, S.G., et al., Multi-walled carbon nanotube-based gas sensors for NH3 detection. Diamond and Related Materials, 2004. 13(4-8): p. 1327-1332.
19.Kim, J., et al., The spontaneous metal-sitting structure on carbon nanotube arrays positioned by inkjet printing for wafer-scale production of high sensitive gas sensor units. Sensors and Actuators B-Chemical, 2009. 135(2): p. 587-591.
20.Jung, S.M., H.Y. Jung, and J.S. Suh, A simple method to fabricate chemical sensors using horizontally aligned clean carbon nanotubes. Sensors and Actuators B-Chemical, 2009. 139(2): p. 425-428.
21.Valentini, L., et al., Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond and Related Materials, 2004. 13(4-8): p. 1301-1305.
22.Chung, J.Y., et al., Multi-walled carbon nanotubes experiencing electrical breakdown as gas sensors. Nanotechnology, 2004. 15(11): p. 1596-1602.
23.Li, Y., H.C. Wang, and M.J. Yang, n-Type gas sensing characteristics of chemically modified multi-walled carbon nanotubes and PMMA composite. Sensors and Actuators B-Chemical, 2007. 121(2): p. 496-500.
24.Penza, M., et al., Characterization of metal-modified and vertically-aligned carbon nanotube films for functionally enhanced gas sensor applications. Thin Solid Films, 2009. 517(22): p. 6211-6216.
25.Ju, S., et al., Highly sensitive hydrogen gas sensors using single-walled carbon nanotubes grafted with Pd nanoparticles. Sensors and Actuators B-Chemical, 2010. 146(1): p. 122-128.
26.Brahim, S., et al., Tailoring gas sensing properties of carbon nanotubes. Journal of Applied Physics, 2008. 104(2): p. 024502 (1-10).
27.Lu, G.H., L.E. Ocola, and J.H. Chen, Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and Multiwalled Carbon Nanotubes. Advanced Materials, 2009. 21(24): p. 2487-2491.
28.Zhao, L., et al., The effect of multiwalled carbon nanotube doping on the CO gas sensitivity of SnO2-based nanomaterials. Nanotechnology, 2007. 18(44).
29.Choi, H.H., et al., Gas Sensing performance of composite materials using conducting polymer/single-walled carbon nanotubes. Macromolecular Research, 2012. 20(2): p. 143-146.
30.Kang, H., et al., Improving the sensitivity of carbon nanotube sensors by benzene functionalization. Sensors and Actuators B-Chemical, 2010. 147(1): p. 316-321.
31.An, K.H., et al., Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Advanced Materials, 2004. 16(12): p. 1005-1009.
32.Dong, K.Y., et al., Effect of plasma treatment on the gas sensor with single-walled carbon nanotube paste. Talanta, 2012. 89: p. 33-37.
33.謝家齊, 奈米碳管海綿之製造與特性研究, 國立清華大學, 2011