研究生: |
黃仁暉 Huang, Ren-Hui |
---|---|
論文名稱: |
利用恆電位沉積法製備花狀鉑鎳合金觸媒應用於質子交換膜燃料電池之陰極探討 Preparation of Unique Flower-like Pt-Ni Alloy Catalysts as the Cathode of a PEMFC by Electrodeposition Technique |
指導教授: |
葉宗洸
Yeh, Tsung-Kuang |
口試委員: |
曾繁根
Tseng, Fan-Gang 薛康琳 Hsueh, Kan-Lin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 質子交換膜燃料電池 、鉑鎳合金觸媒 、電化學共沉積法 、電化學分析技術 、材料分析技術 、氧氣還原反應 |
外文關鍵詞: | PEMFC, PtNi Alloy Catalyst, Electrochemical Analysis Techniques, Co-electrodeposition, Materials Analysis Techniques, Oxygen Reduction Reaction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為提高質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC)之陰極氧氣還原反應(Oxygen Reduction Reaction, ORR),本實驗利用電化學共沉積法直接還原鉑鎳合金觸媒於碳基材表面,有別於傳統化學還原法,還原鉑於碳黑顆粒上再塗佈於電極表面,電化學沉積法具有製備快速、低沉積量、低成本等優點。在本研究中,更選用高還原電位來沉積具有特殊花狀結構的觸媒,透過3D結構來增加觸媒的電化學活性表面(ECSA),藉此提升全電池測試的功率密度。
氧氣還原反應在燃料電池中為速率決定步驟(Rate-Determining Step, RDS),是造成觸媒活性不佳及低耐久度的主因,因此本實驗嘗試添加過渡金屬鎳於貴重金屬鉑的晶格中,形成鉑鎳合金結構。電化學沉積過程中,將鎳還原於鉑的晶格內,鎳將在晶格內部產生壓縮應力,縮短鉑的原子間距(d-spacing),可以改變d-band的能帶位置來改善合金觸媒的催化活性,加快氧氣在觸媒表面的吸附及脫附機制,有效提升氧氣在燃料電池中陰極的ORR速率。不僅如此,在鉑觸媒中添加非貴重金屬,可以讓觸媒顆粒的表面變得粗糙,增加觸媒的電化學活性表面積,並且藉由伽凡尼效應,以過渡金屬鎳來保護活性較穩定之貴重金屬鉑,提升燃料電池的耐久度,不易發生團聚現象。整體而言,鉑鎳合金觸媒的優點除了大幅提升陰極的氧氣還原速率外,也減少了鉑的用量。這些對於提升單位面積效能卻能夠降低成本的技術,皆使燃料電池在未來的商業化之路向前邁進了一大步。本實驗利用恆電位沉積法以硫酸作為輔助電解質並搭配乙二醇作為分散劑及還原劑,成功製備出具有特殊花狀形貌的鉑鎳合金觸媒,透過掃描式電子顯微鏡(scanning electron microscopy, SEM)、高解像能電子顯微鏡(High Resolution Transmission Electron Microscope, HR-TEM)、能量色散X射線譜(Energy Dispersive X-ray Spectroscopy, EDS)、高解析光電子能譜儀(High Resolution X-ray Photoelectron Spectrometer, HR-XPS、X光吸收光譜(X-ray Absorption Spectroscopy, XAS)、X光繞射分析儀(X-ray Diffraction, XRD)及感應耦合電漿質譜分析儀 (Inductively Coupled Plasma-Mass Spectrometer, ICP-MS)確認觸媒形貌分佈、合金化程度及觸媒乘載量。觸媒微結構具有100奈米以下的微觀結構和良好的均勻性,並在XRD圖譜中可以觀察到2 theta位移程度及無明顯的純鎳金屬訊號來佐證本實驗成功製備出的花狀鉑鎳合金觸媒。
在本篇實驗中,將比較電鍍液配方中以硫酸作為輔助電解質及乙二醇作為分散劑之最佳比例,試圖優化觸媒製程參數。搭配循環伏安法(cyclic voltammetry, CV)及旋轉盤電極(rotating disk electrode, RDE)的線性掃描伏安法(linear sweep voltammetry, LSV)等半電池電化學分析,經優化參數後之觸媒分析結果皆顯示本實驗製備之花狀鉑鎳合金觸媒比較商用觸媒具有較高的氧氣還原反應速率及比活性。最終,將自製花狀鉑鎳合金作為陰極,商用觸媒作為陽極組成全電池,最高功率密度可達到1031 mW/cm2,相比以商用觸媒都作為陰陽極的實驗對照組(920 mW/cm2)提高了約12%的功率密度。
The hydrogen economy plays an important role in the low-carbon economy, and fuel cell technology is an essential part of the hydrogen economy. The proton exchange membrane fuel cell (PEMFC) is one kind of electrochemical reaction device with the advantages of low working temperature, high conversion efficiency and noiseless, which is expected to widely utilizes in public transportations. The oxygen reduction reaction (ORR) at the cathode is the rate-determining step in a PEMFC. To enhance the ORR efficiency at the cathode, the unique flower-like platinum-nickel binary alloy catalysts were deposited on the carbon cloth by potentiostatic electrodeposition, effectively improve the oxygen absorption and desorption paths on the surface. The Pt-Ni binary alloy catalysts with the shorter lattice spacings and the effect of high-index facets would increase the electrochemical surface areas (ECSA) of the catalysts and power density. The samples with the pure platinum and commercial Pt catalyst were also prepared as comparison. Morphology, particle size and elemental composition are characterized by SEM, TEM, XRD, XPS, XAS and ICP-MS. In addition, the electrochemical characteristics of the PtNi catalysts were investigated via cyclic voltammetry (CV) and linear sweep voltammetry (LSV) analysis in 0.1 M perchloric acid solution with rotating disk electrode (RDE). In single cell test, the maximum peak power density of PEMFC with homemade PtNi alloy catalyst as the cathode reached to 1031 mW/cm2, enhancing about 12% power density, compared to the commercial Pt/C.
[1] S. H. Kim, B. K. Ahn, & T.W. Lim, “Development of Hyundai-Kia’s fuel cell stack”, J Springer Nature. 9, (2009)14
[2] B. K. Hong, S. H. Kim, and C. M. Kim, “Powering the Future through Hydrogen and Polymer Electrolyte Membrane Fuel Cells”, Johnson Matthey Technol. Rev., 64, (2019)
[3] W. R. Grove, “On voltaic series and the combination of gases by platinum”, Phil. Mag., 14 (1839) 127
[4] J. Larminie, A. Dicks, edited by J. Wiley, Fuel cell systems explained 2nd , John Wiley & Sons Ltd, 2003
[5] 李依文,“應用於質子交換膜燃料電池陰極端之奈米碳管支撐鉑鎳二元觸媒對於氧氣還原之效能研究」,清華大學工程與系統科學系,碩士論文,中華民國一O四年
[6] 卓冠秀,「利用奈米碳管為載體製備應用於質子交換膜燃料電池陰極端之鉑鎳二元觸媒」,清華大學工程與系統科學系,碩士論文,中華民國一O六年
[7] 陳柏璋,「脈衝式電鍍法製備之新穎奈米結構鉑觸媒應用於高效能質子交換膜燃料電池」,清華大學工程與系統科學系,碩士論文,中華民國一O四年
[8] 謝詠芬、何快容,「材料分析技術在積體電路製程中的應用」
[9] B. Wickman, “Nanostructured Model Electrodes for Studies of Fuel Cell Reactions”, Chalmers University of Technology, Department of Applied Physics, PhD thesis (2010)
[10] 薛欽鐸,「淺談機車新能源─燃料電池(下) 」,車輛研究測試中心,中華民國九十九年
[11]A. Pfrang, D.Veyret, G. Tsotridis, “Convection and Conduction HeatTransfer”, European Commission, Joint Research Centre, Institute for Energy (2011)
[12] M. Winter and R. J. Brodd, “What Are Batteries, Fuel Cells, and Supercapacitors?”, J. Chem, 104 (2004) 4245
[13] M. K. Debe, “Electrocatalyst approaches and challenges for automotive fuel cells”, Nature, 486 (2012) 43
[14] M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda, and A. Ohta, "Influences of Both Carbon Supports and Heat-Treatment of Supported Catalyst on Electrochemical Oxidation of Methanol," Journal of the Electrochemical Society, 142 (1995) 2572
[15] E. Antolini, ”Carbon supports for low-temperature fuel cell catalysts”, Applied Catalysis B: Environmental, 88 (2009) 1
[16] M. F. Li, Z. P. Zhao, T. Cheng, A. Fortunelli, C. Y. Chen, R. Yu, Q. H. Zhang, L. Gu, B. V. Merinov, Z. Y. Lin, E. B. Zhu, T. Yu, Q. Y. Jia, J. H. Guo, L. Zhang, W. A. Goddard, Y. Huang & X. F. Duan, “Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction”, Science, 354 (2016) 1414
[17] K. Jayasayee, J. A. R. Van Veen, E. J. M. Hensen & F. A. de Bruijn, “Oxygen Reduction Kinetics on Electrodeposited PtCo as a Model Catalyst for Proton Exchange Membrane Fuel Cell Cathodes: Stability as a Function of PtCo Composition”, Electrochimica Acta, 56, 20, 1 (2011) 7235
[18] L. Jiang, J. A. Syed, Y. Gao, Q. Zhang, J. Zhao, H. Lu & X. Meng. Applied Surface Science, 426, 31(2017) 87
[19] H. A. Gasteiger, S. S. Kocha, B. Sompalli & F. T. Wagner, “Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs”, Appl. Catal. B, 56 (2005) 9
[20] T. Kumeda, N. Otsuka, H. Tajiri, O. Sakata, N. Hoshi & M. Nakamura, “Interfacial Structure of PtNi Surface Alloy on Pt(111) Electrode for Oxygen Reduction Reaction”, ACS Omega, 2 (2017) 1858
[21] H. G. Haubold, T. Vad, H. Jungbluth, P. Hiller, “Nano structure of NAFION: a SAXS study”, Electrochimica Acta, 46, 10 (2001) 1559
[22]黃睿翊,「質子交換膜Nafion117中聚乙二醇與水之交互作用」,國立中山大學化學研究所,碩士論文,中華民國一O一年
[23] A. Ozden, S. Shahgaldi, X. Li, F. Hamdullahpur, “A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs”, Progress in Energy and Combustion Science, 74 (2019) 50
[24] H. Y. Jung, J.W. Kim,” Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC)”, International Journal of Hydrogen Energy, 37, 17 (2012) 12580
[25] A. Hermanna, T. Chaudhuria, P. Spagnolb, “Bipolar plates for PEM fuel cells: A review”, International Journal of Hydrogen Energy, 30 (2005) 1297
[26] T. R. Ralph & M. P. Hogarth, “Catalysis for Low Temperature Fuel Cells Platinum” Platinum Metals Review, 46 (2002) 117
[27] J. N. Tiwari, R. N. Tiwari, G. Singh, K. S. Kim, “Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells”, Nano Energy, 2 (2013) 553
[28] M. Naraghi, “Carbon Nanotubes - Growth and Applications”, InTechOpen (2011)
[29]胡欣儀,「利用電化學沉積法於奈米碳管上製備高濃度鉑奈米顆粒並應用於質子交換膜燃料電池陽極端之研究」,清華大學工程與系統科學系,碩士論文,中華民國一O五年
[30] J. Wang, “Analytical Electrochemistry, 2nd Edition”, Wiley-VCH, New York (2000)
[31]郭豔如,「可拋棄式奈米白金碳墨修飾電極電化學偵測之研究」,國立交通大學應用化學系,碩士論文,中華民國九十八年
[32] Linear Sweep and Cyclic Voltammetry: The Principles, Department of Chemical Engineering and Biotechnology, University of Cambridge,
https://www.ceb.cam.ac.uk/research/groups/rg-eme/Edu/linear-sweep-and-cyclic-voltametry-the-principles
[33] 胡啟章,「電化學原理與方法」,五南圖書出版公司,中華民國九十一年
[34] K. Kinoshita, “Electrochemical Oxygen Technology, Interscience”, New York, 1992
[35] H. S. Wroblowa, Y. C. Pan, & G. Razumney, “Electroreduction of Oxygen–New Mechanistic Criterion” Journal of Electroanalytical Chemistry, vol. 69, pp. 195-201 (1976)
[36] C. H. Hamann, W. Vielstich, “Electrochemistry, ed. 1st.” Wiley-VCH, Weinheim (1998)
[37] N. M. Markovic & P. N. Ross, “Electrocatalysis at Well-Defined Surface, Interfacial Electrochemistry”, A Wieckowski(Ed), Marcrel Dekker, Journal of the American Chemical Society, New York, pp. 821-841 (1999)
[38] S. Mukerjee, S. Srinivasan, M. P. Soriaga and J. MeBreen, “Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction An In Situ XANES and EXAFS Investigation”, J. Elecreochem. Soc, 143(5), 1409(1995)
[39] J. P. Hoare, Advances Electrochemistry and Electrochemical Engineering, P. Delahay, Editor, Interscience Publishers, Inc, New York, 6 (1967) 201
[40]P. Horsman, M. R. Tarasevich, & E. Yeager, "Comprehensive Treatise of Electrochemistry," Springer US (1983)
[41] M. E. Scofield, Y. Zhou, S. Yue, L. Wang, D. Su, X. Tong, M. B. Vukmirovic, R. R. Adzic, and S. S. Wong,” Role of Chemical Composition in the Enhanced Catalytic Activity of Pt-Based Alloyed Ultrathin Nanowires for the Hydrogen Oxidation Reaction under Alkaline Conditions,” American Chemical Society, 6 (2016) 3895
[42] E. Yeager, “Dioxygen Electrocatalysis - Mechanisms in Relation to Catalyst Structure” Journal of Molecular Catalysis, 38 (1986) 5
[43]王文琳、劉政宏,「低成本燃料電池雙極板技術發展現況」,氫能燃料電池特別報導中華民國一O三年
[44] N. Travitsky, T. Ripenbein, D. Golodnitsky, Y. Rosenberg, L. Burshtein, E. Peled, “Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells”, J. Power Sources, 161 (2006) 782
[45] O. Sorsaa, H. Romarb, U. Lassib and T. Kallioa, “Co-electrodeposited Mesoporous PtM (M=Co, Ni, Cu) as an Active Catalyst for Oxygen Reduction Reaction in a Polymer Electrolyte Membrane Fuel Cell”, Electrochimica Acta, 230 (2017) 49
[46] S. Mukerjee & S. Srinivasan, “Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells”, J. Electroanal. Chem, 357 (1993) 201
[47] R. F. Service, “Platinum in Fuel Cells Gets a Helping Hand”, Science, 12, 315(5809), (2007) 172
[48] V. Jalan, & E. J. Taylor, “Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid”, J. Electrochem. Soc, 130(11), (1983) 2329
[49] V. R. Stamenkovic, ”Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability”, Science, 315 (5811), (2007) 493
[50] 謝逸凡,「鉑系觸媒與碳載體電極之電化學研究應用於直接甲醇燃料電池」,國立交通大學材料科學與工程學系,博士論文,中華民國九十九年
[51] V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross and N. M. Markovic, “Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces”, Nat. Mater, 6 (2007) 241
[52] Bragg condition/law/Bragg scattering/Bragg angle, GlobalSino,
https://www.globalsino.com/EM/page3882.html
[53] 林麗娟,“X光繞射原理及其應用,X光材料分析與應用專題”,工業材料雜誌,工業材料研究所,86期,中華民國八十三年
[54] 李珠,“感應耦合電漿質譜儀技術及其在材料分析上的應用”,工業材料雜誌,181期中華民國九十一年
[55] H. I. Lee, C. H. Lee, T. Y. Oh, S. G. Choi, I. W. Park, and K. K. Baek, “Development of 1 kW class polymer electrolyte membrane fuel cell power generation system” Journal of Power Sources, 107 (2002) 110
[56] Procedure for Performing PEM Single Cell Testing, Florida Solar Energy Center (2009)
[57] S. M. Ayyadurai, Y. S. Choi, P. Ganesan, S. P. Kumaraguru, & B. N. Popov, “Novel PEMFC cathodes prepared by pulse deposition”, J. The Electrochemical Society, 154 (10), (2007) 1063
[58] L. Bu, J. Ding, S. Guo, X. Zhang, D. Su, X. Zhu, J. Yao, J. Guo, G. Lu & X. Huang,”A General Method for Multimetallic Platinum Alloy Nanowires as Highly Active and Stable Oxygen Reduction Catalysts”, Adv. Mater, 27 (2015) 7204
[59] Z. W. Quan, Y. X. Wang & J. Y. Fang, “High-Index Faceted Noble Metal Nanocrystals”, Acc. Chem. 46 (2013) 191
[60] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding and Z. L. Wang, “Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity”, Science, 316 (2007) 732
[61] Y. H. Bing, H. S. Liu, L. Zhang, D. Ghosha & J. J. Zhang, “Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction”, Chemical Society Reviews, 6 (2010)
[62] S. You, P. Luo, L. Fang, J. J Gao, L. Liu, H. T. Xu, H. J. Zhang & Y. Wang, “Unique hierarchical flower-like PtNi alloy nanocrystals with enhanced oxygen reduction properties”, Electrochimica Acta, 294 (2019) 406
[63] F. J. Nores-Pondal, I. M. J. Vilella, H. Troiani, M. Granada, S. R. de Miguel, O. A. Scelza and H. R. Corti, “Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods”, Int. J. Hydrogen Energy, 34(19), (2009) 8193
[64] R. Lin, L. Che, D. Shen, X. Cai, “High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis”, Electrochimica Acta, 330 (10), (2019) 227934
[65] F. T. da Silva, V. A. Dalmazzo, M. R. Becker, M. O. de Souza, R. F. de Souza and E. M. A. Martini, “Effect of Ni proportion on the performance of proton exchange membrane fuel cells using PtNi/C electrocatalysts”, J. Springer Nature, 20 (2014) 381
[66] W. K. Suh, P. Ganesan B. Son H. Kim & S. Shanmugam, “Graphene supported Pt–Ni nanoparticles for oxygen reduction reaction in acidic electrolyte”, International Journal of Hydrogen Energy. 41 (30), 10, (2016) 12983
[67] W. Xia, Z. Liang, A. Mahmood, Earth-Abundant Nanomaterials for Oxygen Reduction, Angewandte Review (2015)
[68]Material Project, NiPt3 Structure, https://materialsproject.org/materials/mp-1186117/