簡易檢索 / 詳目顯示

研究生: 薇蓉
Otarola Veron, Maria Pia
論文名稱: 研究領導者在南美公司的 CSR 項目中採用人工智能的倡議.
Researching leaders’ intention to adopt Artificial Intelligence to CSR projects in Latin American companies.
指導教授: 謝英哲
Hsieh, Ying-Che
口試委員: 李昕潔
Lee, Hero SJ
翁晶晶
Weng, Jing-jing
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 國際專業管理碩士班
International Master of Business Administration(IMBA)
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 46
中文關鍵詞: 人工智能立法人工智能企業社會責任拉美發展中經濟體跨國企業政府支持
外文關鍵詞: AI Legislation, Developing Economies, Technology Competence, Government Support
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • N/A


    In 2023, discussions, speculations and several sorts of studies and narratives regard AI as the new electricity. This technology and its unimaginable power at this moment are on the table of many companies which tend to apply it mostly in functions such as Marketing and Customer services to manage massive amounts of data or to automate increasingly those rutinary tasks. The AI might be applied to initiatives in terms of Corporate and Social responsibility. This research explored the companies’ leaders’ intention to adopt this kind of technology to foster and to optimize the firm’s performance in terms of CSR. Moreover, it was studied the potential uses managers’ regard for AI applications in CSR field; and the main factors to motivate or to discourage this kind of technology
    in a context of developing economies in Latin American countries. By means of the study, interviews, and analysis; the research concludes there are several factor influencing the managers intention to adopt AI such as Government support, Technology Competence and Relative Advantage.

    Table of Contents 1. Introduction. ............................................................................................................................ 5 2. Literature Review. ................................................................................................................... 6 2.1 CSR Conceptualization .................................................................................................... 6 2.2 CSR in Latin America. ..................................................................................................... 8 2.3 Green economies theory & Circular Manufacturing. ..................................................... 10 2.4 Cons Factors for the Adoption of Artificial Intelligence in Organizations .................... 11 2.5 CSR in the era of AI. ...................................................................................................... 12 2.6 Problem statement .......................................................................................................... 14 2.7 Research Question .......................................................................................................... 14 2.8 Objectives ....................................................................................................................... 14 3. Methodology. ......................................................................................................................... 15 3.1 Research Approach. ....................................................................................................... 15 3.2 Conceptual model Development. ................................................................................... 15 3.3 Research Model & assumptions. .................................................................................... 18 3.4 Data Collection ............................................................................................................... 19 4. Findings and Analysis ........................................................................................................... 21 4.1 Respondents background................................................................................................ 21 4.2 Companies’ profiles. ...................................................................................................... 22 4.3 CSR in Latin American Companies. .............................................................................. 22 4.4 Discussion ...................................................................................................................... 33 5. Conclusions & recommendations. ......................................................................................... 34 5.1 Limitations and opportunities for future research. ......................................................... 35 6. References ............................................................................................................................. 36 7. Appendix ............................................................................................................................... 39 7.1 Questionnaire & Interview form................................................................................. 39

    6. References
    ▪ Acerbi, F., Sassanelli, C. & Taisch, M. (2022). A conceptual data model promoting data-driven
    circular manufacturing. Oper Manag Res 15, 838–857 https://doi.org/10.1007/s12063-022-
    00271-x
    ▪ Alsheibani, Sulaiman Abdallah; Cheung, Dr. Yen; and Messom, Dr. Chris, (2019). "Factors
    Inhibiting the Adoption of Artificial Intelligence at organizational-level: A Preliminary
    Investigation" AMCIS 2019.
    ▪ Baker, J. (2012) The Technology-Organization-Environment Framework. In: Dwivedi, Y.K.,
    Scott, L.M., Schneberger, L. and Systems, I.S., Eds., Information Systems Theory: Explaining
    and Predicting Our Digital Society, University of Hamburg, Hamburg, 232-243.
    https://doi.org/10.1007/978-1-4419-6108-2_12
    ▪ Ballivian, J. M. (2009). Corporate social responsibility (CSR) activity in Latin America.
    Uprrp.edu. https://fae.uprrp.edu/quest/wp-content/uploads/sites/15/2018/09/070405.pdf
    ▪ Bughin & Hazan, (2019). Can artificial intelligence help society as much as it helps business?
    (2019, August 6). McKinsey & Company.
    https://www.mckinsey.com/capabilities/quantumblack/our-insights/can-artificialintelligence-help-society-as-much-as-it-helps-business
    ▪ Cecilia Darnault, Titouan Parcollet, Mohamed Morchid. (2019) Artificial Intelligence: A Tale
    of Social Responsibility. ffhal-02270410v2f
    ▪ Chui, Harrysson, Manyika, Roberts, Chung, Nel, and Van Heteren, (2018). Applying artificial
    intelligence for social good. (2018, November 28). McKinsey & Company.
    https://www.mckinsey.com/featured-insights/artificial-intelligence/applying-artificialintelligence-for-social-good
    ▪ Corbin, J., & Strauss, A. (2008). Basics of Qualitative Research: Techniques and Procedures
    for Developing Grounded Theory (3rd ed.). Thousand Oaks, CA: Sage. Organizational
    Research Methods, 12(3), 614–617. https://doi.org/10.1177/1094428108324514
    ▪ Dasgupta, S., Agarwal, D., Ioannidis, A., & Gopalakrishnan, S. (1999). Determinants of
    information technology adoption: An extension of existing models to firms in a developing
    country. Journal of Global Information Management, 7(3), 30-40.
    ▪ Fisher, Victoria E. (2016) "A Study of How CSR Rankings are Affected in a Globalized
    Economy," McNair Scholars Research Journal: Vol. 9, Article 7. Available at:
    https://commons.emich.edu/mcnair/vol9/iss1/7
    ▪ Friedman, M. (1962). Capitalism and freedom. Chicago: University of Chicago Press. P.133-
    134.
    ▪ Galeano, E. (1973). The Open Veins of Latin America: five centuries of the pillage of a
    continent. New York, Monthly Review Press.
    ▪ Garza-Reyes, J.A., Kumar, V., Batista, L., Cherrafi, A. and Rocha-Lona, L. (2019), "From
    linear to circular manufacturing business models", Journal of Manufacturing Technology
    Management, Vol. 30 No. 3, pp. 554-560. https://doi.org/10.1108/JMTM-04-2019-356
    ▪ Ghobakhloo, M., Arias‐Aranda, D., & Benitez‐Amado, J. (2011). Adoption of e‐commerce
    applications in SMEs. Industrial Management & Data Systems, 111(8), 1238-1269.
    ▪ Gravetter, F. J., & Forzano, L. A. B. (2018). Research methods for behavioral sciences.
    Cengage learning.
    ▪ Gutiérrez, R., & Jones, A. (2004). Corporate social responsibility in Latin America: An
    overview of its characteristics and effects on local communities. Washington: Inter-American
    Development Bank.
    ▪ Hastie, S., & Wojewoda, S. (2015). Chaos Report - Q&A with Jennifer Lynch. Standish Group
    https://aisel.aisnet.org/amcis2019/adoption_diffusion_IT/adoption_diffusion_IT/2
    ▪ Laloux, F. (2016). Reinventing organizations: A guide to creating organizations inspired by
    the next stage of human consciousness (1st ed., pp. 1-9). Nelson Parker.
    ▪ Lindgreen, A., & Córdoba, J.-R. (2010). Editorial: Corporate Social Responsibility in Latin
    America. Journal of Business Ethics, 91, 167–170. http://www.jstor.org/stable/40929131
    ▪ Miriam Kennet and Volker Heinemann. (2006). Green Economics: setting the scene. Aims,
    context, and philosophical underpinning of the distinctive new solutions offered by Green
    Economics. International Journal of Green Economics. 1:1-2, 68-102
    ▪ OECD, (2023). Enterprises by business size. doi: 10.1787/31d5eeaf-en.
    ▪ Pai, V., & Chandra, S. (2022). Exploring Factors Influencing Organizational Adoption of
    Artificial Intelligence (AI) in Corporate Social Responsibility (CSR) Initiatives. Pacific Asia
    Journal of the Association for Information Systems, 14(5), 82-115.
    https://doi.org/10.17705/1pais.14504
    ▪ Paul Mihas, (2023). Qualitative research methods: approaches to qualitative data analysis,
    International Encyclopedia of Education (Fourth Edition), Elsevier. P. 302-313, ISBN
    9780128186299, https://doi.org/10.1016/B978-0-12-818630-5.11029-2.
    ▪ Peter Dauvergne (2022) Is artificial intelligence greening global supply chains? Exposing the
    political economy of environmental costs, Review of International Political
    Economy, 29:3, 696-718, DOI: 10.1080/09692290.2020.1814381
    ▪ Pigou, A.C. (1920). The Economics of Welfare. London, Macmillan.
    ▪ Ralph Nader, Mark Green & Joel Seligman, (1976). Taming The Giant Corporation. P.1-
    10.
    ▪ Reim, W., Sjödin, D., & Parida, V. (2021). Circular business model implementation: A
    capability development case study from the manufacturing industry. Business Strategy and the
    Environment, 30( 6), 2745– 2757. https://doi.org/10.1002/bse.2891
    ▪ Roco, M.C. (2008). Possibilities for global governance of converging technologies. J
    Nanopart Res 10, 11–29 https://doi.org/10.1007/s11051-007-9269-8
    ▪ Rogers, M.E. (2003) Diffusion of Innovations. 5th Edition, Free Pass, New York.
    ▪ Schwartz, M.S. and Carroll, A.B. (2003). Corporate Social Responsibility: A Three-Domain
    Approach. Business Ethics Quarterly, 13, 503-530. http://dx.doi.org/10.5840/beq200313435
    ▪ Swyngedouw, E. (2004). "Globalization or ‘Gloalization’? Networks, Territories and
    Rescaling". Cambridge Review of International Affairs, 17 (1): 25-48.
    ▪ Team, C. (2020). Corporate Social Responsibility (CSR). Corporate Finance Institute.
    https://corporatefinanceinstitute.com/resources/esg/corporate-social-responsibility-csr/
    ▪ Torres-Baumgarten, G., Yucetepe, V. (2009). Multinational Firms’ Leadership Role in
    Corporate Social Responsibility in Latin America. J Bus Ethics 85 , 217–224.
    https://doi.org/10.1007/s10551-008-9940-8
    ▪ Wan Jan, Wan Saiful. (2006). Defining corporate social responsibility. Journal of Public
    Affairs. 6. 176 - 184. 10.1002/pa.227.
    ▪ Zhu, K., & Kraemer, K. L. (2005). Post-adoption variations in usage and value of e-business
    by organizations: Cross-country evidence from the retail industry. Information Systems
    Research, 16(1), 61-84.

    QR CODE