研究生: |
白仁賢 Jen-Hsien Pai |
---|---|
論文名稱: |
W-K-means algorithms spatial correction W-K-means algorithms spatial correction |
指導教授: |
洪文良
Wen-Liang Hung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 21 |
中文關鍵詞: | 彩色影像分割 、K-means演算法 、W-K-means演算法 、模糊分類 、高斯核心的模糊分類 、FCM |
外文關鍵詞: | Color image segmentation, k-means algorithm, W-k-means algorithm, Fuzzy clustering, Fuzzy c-means, Gaussian kernel-based FCM |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
FCM_S對影像分割是一個合適且有效的演算法。Chen and Zhang在2004年用強健的核心方法由FCM_S導出KFCM_S, KFCM_S1 及 KFCM_S2。Huang et al.在2005年提出一個會自動計算多變權重的演算法(W-k-means)。本篇我們提出AWKM_S2 及 RAWKM_S2 演算法,從一些數值和影像的實驗和KFCM_S2做比較,我們發現AWKM_S2 及 RAWKM_S2 演算法可以獲得較好的實驗結果。
Fuzzy c-means clustering (FCM) with spatial constraints (FCM_S) is an effective algorithm suitable for image segmentation. Chen and Zhang (2004) propose robust kernelized versions KFCM_S, KFCM_S1 and KFCM_S2 by applying the kernel methods. Huang et al. (2005) proposes a W-k-means algorithm that can automatically calculate variable weights. In this paper we propose W-k-means algorithms with spatial correction, and we call them AWKM_S2 and RAWKM_S2. Some numerical and image experiments are performed to assess the performance of AWKM_S2 and RAWKM_S2 in comparison with KFCM_S2.Experimental results show that the proposed AWKM_S2 and RAWKM_S2 have better performance.
[1] Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T., 2002. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21, 193-199.
[2] Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.
[3] Chen, S.C., Zhang, D.Q., 2004. Robust image segmentation using FCM with spatial constrains based on new kernel-induced distance measure. IEEE Trans. Systems Man Cybernet. Pt. B 34, 1907–1916.
[4] J.Z. Huang, M.K. Ng, H. Rong, and Z. Li, 2005. Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Machine Intelligence 27, 657-668.
[5] J. Liu and Y.H. Yang, 1994. Multiresolution color image segmentation technique, IEEE Trans. on Pattern Analysis and Machine Intelligence 16, 689-700.
[6] K. L. Wu and M. S. Yang, 2002. “Alternative c-means clustering algorithms,”Pattern Recognit., vol. 35, 2267–2278.
[7] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, 2002. “A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data,” IEEE Trans. Med. Imaging, vol. 21, 193–199.
[8] Miin-Shen Yang, Hsu-Shen Tsai, Pattern Recognition Letters, Volume 29, Issue 12, 1 September 2008, 1713-1725