簡易檢索 / 詳目顯示

研究生: 白仁賢
Jen-Hsien Pai
論文名稱: W-K-means algorithms spatial correction
W-K-means algorithms spatial correction
指導教授: 洪文良
Wen-Liang Hung
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 21
中文關鍵詞: 彩色影像分割K-means演算法W-K-means演算法模糊分類高斯核心的模糊分類FCM
外文關鍵詞: Color image segmentation, k-means algorithm, W-k-means algorithm, Fuzzy clustering, Fuzzy c-means, Gaussian kernel-based FCM
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FCM_S對影像分割是一個合適且有效的演算法。Chen and Zhang在2004年用強健的核心方法由FCM_S導出KFCM_S, KFCM_S1 及 KFCM_S2。Huang et al.在2005年提出一個會自動計算多變權重的演算法(W-k-means)。本篇我們提出AWKM_S2 及 RAWKM_S2 演算法,從一些數值和影像的實驗和KFCM_S2做比較,我們發現AWKM_S2 及 RAWKM_S2 演算法可以獲得較好的實驗結果。


    Fuzzy c-means clustering (FCM) with spatial constraints (FCM_S) is an effective algorithm suitable for image segmentation. Chen and Zhang (2004) propose robust kernelized versions KFCM_S, KFCM_S1 and KFCM_S2 by applying the kernel methods. Huang et al. (2005) proposes a W-k-means algorithm that can automatically calculate variable weights. In this paper we propose W-k-means algorithms with spatial correction, and we call them AWKM_S2 and RAWKM_S2. Some numerical and image experiments are performed to assess the performance of AWKM_S2 and RAWKM_S2 in comparison with KFCM_S2.Experimental results show that the proposed AWKM_S2 and RAWKM_S2 have better performance.

    1.Introduction--------------------------------------------1 2.Fuzzy clustering algorithms with spatial correction-----2 2.1FCM algorithm-----------------------------------------2 2.2KFCM_S1 and KFCM_S2 algorithm ------------------------4 3.The W-k-means algorithm --------------------------------5 4.Adaptive W-k-means algorithm and Robust Adaptive W-k-means algorithm ----------------------8 4.1 Robust Adaptive W-k-means algorithm ---------=-------8 4.2 Robust Adaptive W-k-means algorithm ----------------10 5.Experimental results-----------------------------------11 6.References---------------------------------------------21

    [1] Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T., 2002. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21, 193-199.
    [2] Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.
    [3] Chen, S.C., Zhang, D.Q., 2004. Robust image segmentation using FCM with spatial constrains based on new kernel-induced distance measure. IEEE Trans. Systems Man Cybernet. Pt. B 34, 1907–1916.
    [4] J.Z. Huang, M.K. Ng, H. Rong, and Z. Li, 2005. Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Machine Intelligence 27, 657-668.
    [5] J. Liu and Y.H. Yang, 1994. Multiresolution color image segmentation technique, IEEE Trans. on Pattern Analysis and Machine Intelligence 16, 689-700.
    [6] K. L. Wu and M. S. Yang, 2002. “Alternative c-means clustering algorithms,”Pattern Recognit., vol. 35, 2267–2278.
    [7] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, 2002. “A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data,” IEEE Trans. Med. Imaging, vol. 21, 193–199.
    [8] Miin-Shen Yang, Hsu-Shen Tsai, Pattern Recognition Letters, Volume 29, Issue 12, 1 September 2008, 1713-1725

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE