研究生: |
許博奕 Hsu, Po-Yi |
---|---|
論文名稱: |
低光強度條件下影像感測器的敏感度優化設計:0.18µm 標準CMOS製程的實現與分析 Sensitivity Optimization Design of Image Sensors under Low Light Intensity Conditions: Implementation and Analysis in 0.18µm Standard CMOS Process |
指導教授: |
徐永珍
Hsu, Yung-Jane |
口試委員: |
賴宇紳
Lai, Yu-Sheng 黃吉成 Huang, Ji-Chang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 影像感測器 、無基板效應P型源極隨耦器 、相關二次取樣 、行放大器 、標準CMOS製程 、N+/pwell光二極體 |
外文關鍵詞: | CMOS image sensor, PMOS source follower, Correlated double sampling, Column amplifier, Standard CMOS process, N+/pwell Photodiode |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用改良式4T-APS CMOS影像感測電路,在TSMC 1P6M 0.18μm標準製程下整合N+/P-well光二極體、像素讀取電路、行放大電路、相關二次取樣電路以及時序控制電路,目標為了達到30 frame/s及解析度Full HD 1920×1080,並提高在影像感測電路在低光環境下之敏感度。
也因為先前缺乏此光二極體之量測數據因此本研究下線之晶片內有額外放置一顆大尺寸之N+/P-well光二極體,為N+/P-well光二極體在逆向偏壓之下之光電特性提供量測數據,以利未來需要之前模擬數據使用。
主要電路輸出之量測結果對於光響應之輸出曲線在線性回歸後,決定係數為0.99911(R^2),線性相依程度很高,也就代表電路輸出得以直接反應光強度大小。而低光強度之量測表現上,最低得以分辨到55.67lux以上之光強度,雖不符合預期,但對於整體來說是能成功操作之影像感測電路,且為在標準製程下提高低光強度之敏感度有潛力之架構。
This study utilizes an improved 4T-APS CMOS image sensing circuit, integrating an N+/P-well photodiode, pixel readout circuit, row amplifier, correlated double sampling (CDS) circuit, and timing control circuit, fabricated using TSMC standard 1P6M 0.18μm CMOS process. The design aims to achieve a frame rate of 30 frames per second with Full HD 1920×1080 resolution, while enhancing the sensitivity of the image sensing circuit under low-light conditions.
Due to the lack of prior measurement data for this type of photodiode, an additional large-area N+/P-well photodiode was included on the fabricated chip to provide measurement data for the photodiode’s photoelectric characteristics under reverse bias, supporting future simulation and modeling needs.
The measurement results of the main circuit’s output show a high degree of linearity in the light response output curve, with a coefficient of determination (R2) of 0.99911 after linear regression. This indicates a strong linear correlation, demonstrating that the circuit output can directly reflect the incident light intensity.
In terms of low-light performance, the circuit is capable of distinguishing light intensities above 55.67 lux. Although this does not fully meet expectations, the image sensing circuit operates successfully overall and demonstrates potential for enhanced sensitivity to low-light conditions within a standard CMOS process.
[1] Yole Development. (2024). Status of the CMOS Image Sensor Industry 2024 report sample [Online]. Available: https://www.yolegroup.com/product/report/ status-of-the-cmos-image-sensor-industry-2024/
[2] A. El Gamal and H. Eltoukhy, "CMOS image sensors," in IEEE Circuits and Devices Magazine, vol. 21, no. 3, pp. 6-20, May-June 2005
[3] 雷良煥, 黃吉成, 徐永珍, “後來居上的CMOS 影像感測器,” 物理雙月刊32卷1期, 2010
[4] S. Guissi. (2017). CMOS Image Sensors (CIS): Past, Present & Future [Online]. Available: https://www.coventor.com/blog/cmos-image-sensors-cis-past-present-future/
[5] Canon News. (2019). Future Canon sensor technology - an overview [Online]. Available: https://www.canonnews.com/future-canon-sensor-technology-an-overview
[6] iSUPPLi; IDC; strategies unlimited; JPMorgan; Micron Marking, 2005
[7] M. Sakakibara et al., "A high-sensitivity CMOS image sensor with gain-adaptive column amplifiers," in IEEE Journal of Solid-State Circuits, vol. 40, no. 5, pp. 1147-1156, May 2005
[8] Bigas, M., Cabruja, E., Forest, J., & Salvi, J. (2006). Review of CMOS image sensors. Microelectronics journal, 37(5), 433-451.
[9] PVEducation. Optical Properties of Silicon. [Online]. Available: https://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon
[10] J. Ohta, Smart CMOS Image Sensors and Applications, CRC Press, 2007
[11] 葉奕良。「光伏模式 CMOS影像感測器之動態範圍擴展」。碩士論文,國立清華大學電子工程研究所,2021。
[12] S. Kleinfelder, SukHwan Lim, Xinqiao Liu and A. El Gamal, "A 10000 frames/s CMOS digital pixel sensor," in IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 2049-2059, Dec. 2001
[13] I. Brouk, A. Nemirovsky, Y. Nemirovsky, "Analysis of noise in CMOS image sensor," in IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, 2008, pp.1-8
[14] Behzad Razavi, “Design of Analog CMOS Integrated Circuit”, McGraw-Hill, 2001.
[15] Y. Chen, X. Wang, A. J. Mierop and A. J. P. Theuwissen, "A CMOS Image Sensor With In-Pixel Buried-Channel Source Follower and Optimized Row Selector," in IEEE Transactions on Electron Devices, vol. 56, no. 11, pp. 2390-2397, Nov. 2009
[16] Y. Chen, Y. Xu, Y. Chae, A. Mierop, X. Wang, and A. Theuwissen, “A 0.7e-rms-temporal-readout-noise CMOS image sensor for low-light-level imaging,” in IEEE International Solid-State Circuits Conference, Feb. 2012, pp. 384-386
[17] Y. Chen, J. Tan, X. Wang, A. J. Mierop, and A. J. P. Theuwissen, “In-pixel buried-channel source follower in CMOS image sensors exposed to X-ray radiation,” in Proceedings of IEEE Sensors, Nov. 1-4 2010, pp. 1649-1652
[18] A. Boukhayma, A. Peizerat, and C. Enz, “Temporal Readout Noise Analysis and Reduction Techniques for Low-Light CMOS Image Sensors,” IEEE Transactions on Electron Devices, vol. 63, no. 1, pp. 72-78, Jan. 2016.
[19] C. Lotto, P. Seitz, and T. Baechler, “A sub-electron readout noise CMOS image sensor with pixel-level open-loop voltage amplification,” in 2011 IEEE International Solid-State Circuits Conference, Feb. 2011, pp. 402-404
[20] N. Kawai and S. Kawahito, “Noise analysis of high-gain, low-noise column readout circuits for CMOS image sensors,” IEEE Transactions on Electron Devices, vol. 51, no. 2, pp. 185-194, Feb. 2004
[21] S. Suh, S. Itoh, S. Aoyama, and S. Kawahito, “Column-parallel correlated multiple sampling circuits for CMOS image sensors and their noise reduction effects,” Sensors, vol. 10, no. 10, pp. 9139-9154, 2010
[22] Ge, Xiaoliang, and Albert Theuwissen. "A CMOS image sensor with nearly unity-gain source follower and optimized column amplifier." in IEEE SENSORS, pp. 1-3, 2016.
[23] A. Boukhayma, A. Peizerat and C. Enz, "A Sub-0.5 Electron Read Noise VGA Image Sensor in a Standard CMOS Process," in IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 2180-2191, Sept. 2016
[24] 林祐玄, “標準製程下實現高響應度橫向光感測電晶體之研究", 國立清華大學, 電子工程研究所, 碩士論文, 中華民國一百零六年十月
[25] Analog layout – Wells, Taps, and Guard rings, https://pulsic.com/analog-layout-wells-taps-and-guard-rings/
[26] X. Ge and A. J. P. Theuwissen, "A 0.5erms− Temporal Noise CMOS Image Sensor With Gm-Cell-Based Pixel and Period-Controlled Variable Conversion Gain," in IEEE Transactions on Electron Devices, vol. 64, no. 12, pp. 5019-5026, Dec. 2017
[27] C. T. Tai, M. D. Ker, “Optimization of Guard Ring Structures to Improve Latchup Immunity in an 18 V DDDMOS Process,” IEEE Transactions on Electron Devices, vol. 63, no. 6, pp. 1-6, June. 2016.
[28] “CMOS光電轉換特性”, https://www.cnblogs.com/uestc-mm/p/17493625.html