研究生: |
羅仁和 Jen-Ho Lo |
---|---|
論文名稱: |
泊松能斯特普朗克的尺寸修正模型 Size-Modified Poisson-Nernst-Planck Model |
指導教授: |
劉晉良
Jinn-Liang Liu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 27 |
中文關鍵詞: | 離子通道 、有限尺寸 、二階收斂性 |
外文關鍵詞: | ion channel, finite size, second-order convergent |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
泊松能斯特普朗克(PNP)模型是一個在開放離子通道的離子流之連續的基本模
型模擬。靜電,密度分佈和擴散的影響有限粒徑離子溶液[8]的研究一直是長期存在的話題。泊松方程是推導庫侖律的靜電與在微積分中的高斯定理而得到的。能斯特普朗克方程是對流擴散的模型。一個熵的函數解釋了Borukhov[1]等人所提出在泊松波茲曼(PB)方程中,電解質離子在有限尺寸下的影響,並且由Lu 和Zhou [8]推廣至泊松能斯特普朗克(PNP)模型。我們的有限尺寸線性PNP 模型利用正解而得到二階收斂性結果。對於非線性有限尺寸PNP 模型利用正解,數值誤差幾乎為零。
The Poisson-Nernst-Planck (PNP) model is a basic continuum model for simulating ionic flows in an open ion channel. The effects of finite particle size on electrostatics, density profile, and diffusion have been a long existing topic in the study of ionic solution [8]. The Poisson equation is derived from Coulomb's law in electrostatics and Gauss's theorem in calculus. The Nernst-Planck equation is equivalent to the convection-diffussion model. An entropy functional that accounts for the finite size effects of ions in electrolytes proposed by Borukhov et al. [1] for the Poisson-Boltzmann (PB) equation has been generalized by Lu and Zhou [8] to the PNP model. We obtain second-order convergent results for the finite size linear PNP model with exact solutions.
For nonlinear finite size PNP model with exact solutions, the numerical errors are almost zero.
[1] I. Borukhov, D. Andelman, and H. Orland, Steric e¤ects in electrolytes: A modi
ed
Poisson-Boltzmann equation, Phys. Rev. Lett. 79 (1997) 435438.
[2] D. P. Chen, V. Barcilon, and R. S. Eisenberg, Constant
elds and constant gradients
in open ionic channels, Biophys. J. 61 (1992) 13721393.
[3] D. Chen, and G.-W.Wei, Quantum dynamicsin continuum for ion channel transport,
preprint (2010).
[4] I-L. Chern, J.-G. Liu, and W.-C. Wang, Accurate evaluation of electrostatics for
macromolecules in solution, Methods Appl. Anal. 10 (2003) 309328.
[5] R. S. Eisenberg, Multiple scales in the simulation of ion channels and proteins, J.
Phys. Chem. C 114 (2010) 2071920733.
[6] B. Hille, Ionic Channels of Excitable Membranes, 3rd Ed., Sinauer Associates Inc.,
Sunderland, MA, 2001.
[7] J.-L. Liu, Lecture Notes on Poisson-Nernst-Planck Modeling and Simulation of Bio-
logicalIon Channels, 2012.
[8] B. Lu and Y. C. Zhou, Poisson-Nernst-Planck Equations for simulating biomolec-
ular di¤usion-reaction processes II: Size e¤ects on ionic distributions and di¤usion-
reaction rates, Preprint (2011).
[9] Popular Information, Nobelprize.org. 18 Jan 2011, http://nobelprize.org/ no-
bel_prizes/chemistry/laureates/2003/public.html.
[10] Q. Zheng, D. Chen, and G.-W. Wei, Second-order Poisson Nernst-Planck solver for
ion channel transport, J. Comp. Phys. 230 (2011) 5239-5262.