研究生: |
程潼文 Cheng, Tung-Wen |
---|---|
論文名稱: |
Mechanical strength of carbon nanotube ropes and characterization of intertube binding and friction 奈米碳管纜繩的機械強度及管間結合力與摩擦力的特性 |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 奈米碳管纜繩 、抗拉強度 、機械性質 、振動性質 、阻尼因子 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The works presented in this thesis discuss the effects arising from intertube friction while single-walled carbon nanotubes (SWCNTs) aggregate into rope structure, including enhancement of tensile strength, Young’s modulus, damping effect and energy transmission and dissipation. The mechanical properties are found to be significantly depending on tube-tube interactions and current work has developed a effective technique in promoting the tensile strength through enhancing the intertube interaction by winding SWCNT ropes. The variation in Young’s modulus during tensile test and fracture of SWCNT ropes are also discussed. The damping factor of SWCNT ropes have been evaluated and compared with various materials, including tungsten wire, silk, spider silk and carbon fibers.
Chapter 1 the basic information of carbon nanotubes (CNTs) is introduced, including structures, deformation mechanisms, mechanical properties of SWCNTs and SWCNT ropes.
Chapter 2 briefly describes experimental setup, and characterization techniques employed in this study.
Chapter 3 shows a conventional method for enhancing the strength of SWCNT ropes. The Young’s modulus of the winding SWCNT ropes is calculated based on strain-stress profiles. A model is also demonstrated for step-wise fracture of SWCNT ropes under tensile test.
Chapter 4 discusses a vibration experiment on a doubly clamped SWCNT rope, tungsten wire, carbon fibers, silks and spider silks. Elastic wave propagation through the SWCNT rope is strongly scattered by intertube junctions and excitation energy is found to dissipate via tube-tube friction. Intertube scattering also accounts for the low energy transmission rate and high damping factor.
Chapter 5 concludes the experimental results.
Chapter 1
[1] S. Iijima, Nature, 354, 56 (1991)
[2] T. W. Ebbesen, Rev. Mater. Sci. 24, 235 (1994)
[3] G. Ovemey, W. Zhong and D. Z. Tomanek, Phys. D, 27, 93 (1993)
[4] D. H. Robertson, D. W. Brenner and J. W. Mintmire, Phys. Rev. B, 45, 12592 (1992)
[5] P. Calvert, Nature, 357, 365 (1992)
[6] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature, 318, 162 (1985)
[7] B. I. Yakobson and R. E. Smalley, Am. Sci. 85, 324 (1997)
[8] M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund, Science of Fullerenes & Carbon Nanotubes, San Diego: Academic Press, 1996.
[9] M. S. Dresselhaus, G. Dresselhaus and R. Saito, Phys. Rev. B, 45, 6234 (1992).
[10] R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Appl. Phys. Lett., 60, 2204 (1992)
[11] T. W. Ebbesen and P. M. Ajayan, Nature, 358, 220 (1992)
[12] P. M. Ajayan and S. Iijima, Nature, 358, 23 (1992)
[13] J. C. Charlier and J. P. Michenaud, Phys. Rev. Lett., 70, 1858 (1993)
[14] S. Iijima and T. Ichihashi, Nature, 363, 603 (1993)
[15] H. Kanzow, P. Bernier and A. Ding, Appl. Phys. A, 74, 411 (2002)
[16] Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee and B. S. Lee, J. Appl. Phys., 88, 4898 (2000)
[17] E. F. Kukovitsky, S. G. L’vov, N. A. Sainov, V. A. Shustov and L. A. Chernozatonskii, Chem. Phys. Lett., 355, 497 (2002)
[18] L. Kim, E. M. Lee, S. J. Cho and J. S. Suh, Carbon, 43, 1453 (2005)
[19] Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita and T. Hayashi, Chem. Phys. Lett., 204, 277 (1993)
[20] Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita and T. Hayashi, Phys. Rev. B., 48 1907 (1993)
[21] C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus and M. S. Dreselhaus, Phys. Rev. Lett., 81, 1869 (1998)
[22] S. N. Song, X. K. Wang, R. P. H. Chang and J. B. Ketterson, Phys. Rev. Lett., 72, 697 (1994)
[23] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer and R. E. Smalley, Science, 273, 483 (1996)
[24] L. C. Qin and S. Iijima, Chem. Phys. Lett., 269, 65 (1997)
[25] Q. H. Yang, S. Bai, J. L. Sauvajol and J. B. Bai, Adv. Mater., 15, 792 (2003)
[26] J. E. Lennard-Jones, Proc. Phys. Soc., 43, 461 (1931)
[27] L. A. Girifalco, M. Hodak and R. S. Lee, Phys. Rev. B, 62, 13104 (2000)
[28] J. Tersoff and R. S. Ruoff, Phys. Rev. Lett., 73, 676 (1994)
[29] J. Tersoff, Phys. Rev. Lett., 61, 2879 (1988)
[30] J. Tersoff, Phys. Rev. B., 46, 15546 (1992)
[31] T. Hertel, R. E. Walkup and Ph. Avouris, Phys. Rev. B, 58, 13870 (1998)
[32] R. S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney and B. Chan, Nature, 364, 514 (1993)
[33] Ph. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea and R. E. Walkup, Appl. Surf. Sci., 141, 201 (1999)
[34] R. S. Ruoff and D. C. Lorents, Carbon, 33, 925 (1995)
[35] B. I. Yakobson, C. J. Brabec and J. Bernholc, Phys. Rev. Lett., 76, 2511 (1996)
[36] J. P. Lu, Phys. Rev. Lett., 79, 1297 (1997)
[37] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and M. M. Treacy, Phys. Rev. B, 58, 14013 (1998)
[38] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith and R. E. Smalley, Appl. Phys. Lett., 74, 3803 (1999)
[39] T. Ozaki, Y. Iwasa and T. Mitani, Phys. Rev. Lett., 84, 1712 (2000)
[40] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, Science, 287, 637 (2000)
[41] C. Li and T. W. Chou, Phys. Rev. B, 69, 073401 (2004)
[42] C. A. Coulson, Valence. Oxford University Press, Oxford, 1952
[43] G. Overney, W. Zhong and D. Tománek, Z. Phys. D, 27, 93 (1993)
[44] R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, London, Imperial College Press, 1998.
[45] C. F. Cornwell and L. T. Wille, Solid State Comm., 101, 555 (1997)
[46] N. Yao and V. Lordi, J. Appl. Phys., 84, 1939 (1998)
[47] E. Hernández, C. Goze, P. Bernier and A. Rubio, Phys. Rev. Lett., 80, 4502 (1998)
[48] X. Zhou, J. Zhou and Z. C. Ou-Yang, Phys. Rev. B, 62, 13692 (2000)
[49] G. Adams, O. F. Sankey, J. B. Page, M. O’Keeffe and D. A. Drabold, Science, 256, 1792 (1992)
[50] A. A. Lucas, P. H. Lambin and R. E. Smalley, J. Phys. Chem. Solid, 54, 587 (1993)
[51] D. Sánchez-Portal, E. Artacho, J. M. Soler, A. Rubio and P. Ordejón, Phys. Rev. B, 59, 12678 (1999)
[52] M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, Nature, 381, 678 (1996)
[53] M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain and H. A. Goldberg, in Graphite Fibers and Filaments Ch 6 (eds U. Gonser, A. Mooradian, K. A. Muller, M. B. Panish and H. Sakaki 120-152 (Springer, New York, 1988)
[54] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and M. M. J. Treacy, Phys. Rev. B, 58, 14013 (1998)
[55] J.-P. Salvetat and A. Rubio, Carbon, 40, 1729 (2002)
[56] J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stökli, N. A. Burnham and L. Forró, Phys. Rev. Lett., 82, 944 (1999)
[57] J.-P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stökli, K. Méténier, S. Bonnamy, F. Béguin, N. A. Burnham and L. Forró, Adv. Mater., 11, 161 (1999)
[58] E. Wong, P. Sheehan and C. Lieber, Science, 277, 1971 (1997)
[59] M. F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, Phys. Rev. Lett., 84, 5552 (2000)
[60] P. Poncharal, Z. L. Wang, D. Ugarte and W. A. de Heer, Science, 283, 1513 (1999)
[61] Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang and D. L. Zhang, Appl. Phys. Lett., 74, 3152 (1999)
[62] S. Iijima, C. Brabec, A. Maiti and J. Bernholc, J. Chem. Phys., 104, 2089 (1996)
[63] R. S. Ruoff and D. C. Lorents, Carbon, 33, 925 (1995)
[64] J. Bernholc, C. Brabec, M. Buongiorno-Nardelli, A. Maiti, C. Ronald and B. I. Yakobson, Appl. Phys. A, 67, 39 (1998)
[65] M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks Jr., S. Washburn and R. Superfine, Nature, 389, 582 (1997)
[66] O. Lourie, D. M. Cox and H. D. Wagner, Phys. Rev. Lett., 81, 1638 (1998)
[67] M. Buongiorno-Nardelli, B. I. Yakobson and J. Bernholc, Phys. Rev. B, 57, R4277 (1998)
[68] M. Buongiorno-Nardelli, B. I. Yakobson and J. Bernholc, Phys. Rev. Lett., 81, 4656 (1998)
[69] A. J. Stone and D. J. Wales, Chem. Phys. Lett., 128, 501 (1986)
[70] B. Reulet, A. Yu. Kasumov, M. Kociak, R. Deblock, I. I. Khodos, Yu. B. Gorbatov, V. T. Vokov, C. Journet and H. Bouchiat, Phys. Rev. Lett., 85, 2829 (2000)
[71] L. M. Jonsson, L. Y. Gorelik, R. I. Shekhter and M. Jonson, Nano Lett., 5, 1165 (2005)
[72] V. Sazanova, Y. Yaish, H. Üstünel, D. Roundy, T. A. Arias and P. L. McEuen, Nature, 431, 284 (2004)
[73] A. N. Cleland, Nature, 431, 251 (2004)
[74] M. S. Dresselhaus, G. Dresselhaus and Ph. Avouris, Carbon nanotubes: Synthesis, Structure, Properties, and Applications., Springer, 2000.
[75] D. E. Soule and C. W. Nezbeda, J. Appl. Phys., 39, 5122 (1968)
[76] N. Hamada, S.-I. Sawada and A. Oshiyama, Phys. Rev. Lett., 68, 1579 (1992)
[77] R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. B, 46, 1804 (1992)
[78] J. Mintmire, B. I. Dunlap and C. T. White, Phys. Rev. Lett., 68, 631 (1992)
[79] J. Mintmire, D. H. Robertson and C. T. White, J. Phys. Chem. Solid, 54, 1835 (1993)
[80] R. Saito, G. Dresselhaus and M. S. Dresselhaus, J. Appl. Phys., 73, 494 (1993)
[81] X. Blase, L. X. Benedict, E. L. Shirley and S. G. Louie, Phys. Rev. Lett., 72, 1878 (1994)
[82] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, Nature, 382, 54 (1996)
[83] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs and C. Dekker, Nature, 386, 474 (1997)
[84] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess and R. E. Smalley, Science, 275, 1922 (1997)
[85] C. T. White and T. N. Todorov, Nature, 393, 240 (1998)
[86] J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, Nature, 391, 59 (1998)
[87] S. J. Tans, M. H. Devoret, R. J. A. Groeneveld and C. Dekker, Nature, 394, 761 (1998)
[88] T. W. Odom, J.-L. Huang, P. Kim and C. M. Lieber, Nature, 391, 62 (1998)
[89] L. C. Venema, J. W. G. Wildöer, J. W. Janssen, S. J. Tans, H. L. J. T. Tuinstra, L. P. Kouwenhoven and C. Dekker, Science, 283, 52 (1999)
[90] S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven and C. Dekker, Natuure, 412, 617 (2001)
[91] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus and M. S. Dresselhaus, Science, 275, 187 (1997)
[92] S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, Science, 265, 635 (1994)
[93] M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H. W. Kroto and A. Sarkar, Carbon, 33, 873 (1995)
[94] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, Chem. Phys. Lett., 243, 49 (1995)
[95] M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto and D. R. M. Walton, Nature, 388, 52 (1997)
[96] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate and H. Dai, Nature, 395, 878 (1998)
[97] Y. Chen and J. Yu, Appl. Phys. Lett., 87, 033103 (2005)
[98] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature, 363, 605 (1993)
[99] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee and J. E. Fischer, Nature, 388, 756 (1997)
[100] Y. Saito and M. Inagaki, Jpn. J. Appl. Phys., 32, L954 (1993)
[101] W. K. Hsu, J. P. Hare, M. Terrones, H. W. Kroto and D. R. M. Walton, Nature, 377, 687 (1995)
[102] W. K. Hsu, M. Terrones, J. P. Hare, H. Terrones, H. W. Kroto and D. R. M. Walton, Chem. Phys. Lett., 262, 161 (1996)
Chapter 2
[1] H.-M. Cheng, F. Li, X. San, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus and M. S. Dresselhaus, Chem. Phys. Lett., 289, 602 (1998)
[2] T. W. Cheng and W. K. Hsu, Appl. Phys. Lett., 90, 123102 (2007)
Chapter 3
[1] Wire rope handbook, Cookes
[2] http://en.wikipedia.org/wiki/Wire_rope
[3] http://www.inventionfactory.com/history/RHAwire/wireengn/wire/whatis.html
[4] http://www.bullivants.com/front/wire_rope.php?mod=2&id_dir=20
[5] http://www.hanessupply.com/glossary.asp
[6] http://www.unionrope.com/Technical-Reference/Wire-Rope-Basics
[7] J. Tersoff and R. S. Ruoff, Phys. Rev. Lett., 73, 676 (1994)
[8] G. B. Adams, O. F. Sankey, J. B. Page, M. O’Keeffe and D. A. Drabold, Science, 256, 1792 (1992)
[9] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, Science, 287, 637 (2000)
[10] M.-F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, Phys. Rev. Lett., 84, 5552 (2000)
[11] Y.-L. Li, A. Kinloch and A. H. Windle, Science, 304, 276 (2004)
[12] Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou and G. Wang, Appl. Phys. Lett., 74, 3152 (1999)
[13] B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier and Ph. Poulin, Science, 290, 1331 (2000)
[14] B. Vigolo, Ph. Poulin, M. Lucas, P. Launois and P. Bernier, Appl. Phys. Lett., 81, 1210 (2002)
[15] H. M. Feng, F. Li, X. San, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus and M. S. Dresselhaus, Chem. Phys. Lett., 289, 602 (1998)
[16] M. S. Dresselhaus, G. Dresselhaus and Ph. Avouris, Carbon nanotubes: Synthesis, Structure, Properties, and Applications., Springer, 2000
[17] J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, N. A. Burnham and L. Forró, Phys. Rev. Lett., 82, 944(1999)
[18] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer and R. E. Smalley, Science, 273, 483 (1996)
[19] L. C. Qin and S. Iijima, Chem. Phys. Lett., 269, 65 (1997)
[20] Q. H. Yang, S. Bai, J. L. Sauvajol and J. B. Bai, Adv. Mater., 15, 792 (2003)
[21] F. Li, H.-M. Cheng, S. Bai and G. Su, Appl. Phys. Lett., 77, 3161 (2000)
[22] M. Zhang, K. R. Atkinson and R. H. Baughman, Science, 306, 1358 (2004)
[23] S. H. Syue, S. Y. Lu, W. K. Hsu and H. C. Shih, Appl. Phys. Lett., 89, 163115 (2006)
[24] David R. Lide, CRC Handbook of Chemistry and Physics (CRC, Boca Raton, 1994), pp. 15-40
Chapter 4
[1] http://en.wikipedia.org/wiki/Vibration
[2] http://en.wikipedia.org/wiki/Oscillation
[3] http://en.wikipedia.org/wiki/Vibrating_string
[4] B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science, 290, 1331 (2000)
[5] Y. L. Li, I. A. Kinloch, A. H. Windle, Science, 304, 276 (2004)
[6] L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, et al, Science, 305, 1447 (2004)
[7] T. W. Cheng, W. K. Hsu, Appl. Phys. Lett., 90, 123102 (2007)
[8] P. C. P. Watts, W. K. Hsu, H. W. Kroto, D. R. M. Walton, Nanoletters, 3, 549 (2003)
[9] M. Zhang, K. R. Atkinson, R. H. Baughman, Science, 306, 1358 (2004)
[10] B. I. Yakobson, Appl. Phys. Lett., 72, 918 (1998)
[11] C. Jourrnet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy, M. L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer, Nature, 388, 756 (1997)
[12] F. Vollrath and D. P. Knight, Nature, 410, 541 (2001)
[13] V. Sazanova, Y. Yaish, H. Üstünel, D. Roundy, T. A. Arias and P. McEuen, Nature, 431, 284 (2004)
[14] K. Atkinson, S. Roth, M. Hirscher and W. Grünwald, Fuel Cells Bulletin, 38, 9 (2001)
[15] M. M. Treacy, T. W. Ebbesen and J. M. Gibson, Nature, 381, 678 (1996)
[16] S. H. Syue, S. Y. Lu, W. K. Hsu and H. C. Shih, Appl. Phys. Lett., 89, 163115 (2006)
[17] A. Cao, P. L. Dickrell, W. G. Sawyer, M. N. G. Nejhad and P. M. Ajayan, Science, 310, 1307 (2005)