簡易檢索 / 詳目顯示

研究生: 張書豪
論文名稱: 下背部3D 生物力學評估系統建立與資訊視覺化
指導教授: 王茂駿
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 66
中文關鍵詞: 3D生物力學模型下背痛數位人體模型資訊視覺化
外文關鍵詞: 3D biomechanical model, low back pain, digital human model, information visualization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不良的搬遲姿勢與不當的工作時間,往往是造成下背傷害的主要原因。目前在下背傷害的分析方法中,最為普遍的即為腰椎之生物力學分析。利用生物力學模型輸入相關參數,即可得知某一姿勢下腰椎椎間盤的受力情形,進而評估其可能的風險。
    本研究建立了國人下背部3D 生物力學模型,引用最新的椎間盤轉動理論,並結合動作擷取系統,應用數學軟體開發出「下背部3D 生物力學評估系統(BES)」。系統可自動讀取動作擷取後產生的資訊,進行3D 生物力學運算並分析出每一個動作影格的生物力學數值,最後再以圖表或表單的方式呈現評估後的資訊,方便使用者進行檢視。
    其次,利用動畫軟體開發「資訊視覺化模組(IVM)」。此模組可將評估後之生物力學資訊呈現於模組介面,並以視覺化的方式將評估結果呈現於數位人體模型。模組架構於3D 動畫軟體平台,系統操作者可透過模組同步進行生物力學資訊的檢視及控制數位人體模型的動作呈現,並可自由的平移、縮放與旋轉虛擬場景,進行各個不同視角的檢視。
    透過本研究所開發的系統模組,以客觀的數據並結合資訊視覺化的呈現方式,將可提供系統操作者一個詳細且易於檢視的的生物力學評估資訊,進而協助其進行工作站或人員動作的評估,快速發掘問題所在,並進一步對可能的原因給予建議與改善。


    中文摘要.............................................................................................Ⅰ 英文摘要.............................................................................................Ⅱ 目錄.....................................................................................................Ⅲ 圖目錄.................................................................................................Ⅴ 表目錄.................................................................................................Ⅶ 第一章 緒論.........................................................................................1 1-1 研究背景.......................................................................................................1 1-2 研究動機.......................................................................................................2 1-3 研究目的.......................................................................................................3 第二章 文獻探討.................................................................................4 2-1 下背痛的成因...............................................................................................4 2-2 腰椎組織結構...............................................................................................7 2-2-1 脊椎關節...............................................................................................7 2-2-2 L5/S1 椎間盤........................................................................................8 2-2-3 椎間盤轉動角度.................................................................................10 2-2-4 肌肉組織.............................................................................................11 2-3 生物力學模型演進....................................................................................12 2-3-1 2D 生物力學模型...............................................................................12 2-3-2 3D 生物力學模型...............................................................................14 2-3-3 動態生物力學模型............................................................................17 2-4 數位人體模型.............................................................................................20 IV 第三章 研究方法...............................................................................22 3-1 研究流程.....................................................................................................22 3-2 實驗設備.....................................................................................................24 3-3 下背部3D 生物力學評估系統(BES)建立.........................................27 3-4-1 生物力學外力模型建構....................................................................28 3-4-2 生物力學內力模型建構....................................................................33 3-4-3 BES 使用者介面開發........................................................................35 3-4 3D 生物力學模型驗證..............................................................................37 3-5 資訊視覺化模組(IVM)開發................................................................42 第四章 研究成果...............................................................................47 4-1 BES 介面環境............................................................................................47 4-2 IVM 介面環境............................................................................................51 第五章 討論.......................................................................................54 5-1 研究假設與誤差.........................................................................................54 5-1-1 研究假設.............................................................................................54 5-1-2 研究誤差.............................................................................................55 5-2 研究限制與後續發展................................................................................55 5-2-1 研究限制.............................................................................................55 5-2-2 研究後續發展.....................................................................................56 第六章 結論.......................................................................................57 參考文獻.............................................................................................59

    全衛生研究所研究報告,IOSH84-H302
    10. 陳志勇,1998。人工搬運作業省力化可行性研究。行正院勞工委員會勞工
    安全衛生研究所研究報告,IOSH87-H326
    11. 鄭誠功,林燕慧,1999。生物力學評估與應用研究(二)—臨床及案例評
    估應用研究。行政院勞工委員會勞工安全衛生研究所委託研究報告,
    IOSH89-H124
    12. 應宜雄,盧士一,陳志勇,李正隆,1999。生物力學法人工抬舉姿勢評估
    圖之製作。行政院勞工委員會勞工安全衛生研究,勞工安全衛生研究季刊
    ,7(4),443-458
    13. 唐偉誠,2000。腰椎受力分佈最佳化模型之參數分析。國立陽明大學醫學
    工程研究所碩士論文
    14. Anderson, C.K., Chaffin, D.B., and Herrin, G.D., 1986. A study of lumbosacral
    orientation under varied static loads. Spine, 11(5), 456-462
    60
    15. Badler, N., 1997. Virtual humans for animation, ergonomics, and simulation.
    IEEE Workshop on Non-Rigid and Articulated Motion. Puerto Rico.
    16. Bean, J.C., Chaffin, D.B., and Schultz, A.B., 1988. Biomechanical model
    calculation of muscle contraction forces: a double linear programming method.
    Journal of Biomechanics, 21, 59-66
    17. Bejjani, F.J., Gross, C.M., and Pugh, J.W., 1984. Model for static lifting:
    relationship of loads on the lumbar spine and knee. Journal of Biomechanics,
    17, 281-286
    18. Bergmerk, A., 1987. Mechanical stability of the human lumbar spine.
    Dissertation, Lund Institute of Technology, Lund, Sweden.
    19. Chaffin, D.B., 1966. Methods-Time-Measurement Journal, 11(5), 25-32
    20. Chaffin, D.B., 1969. A computerized biomechanical model : Development and
    use in studying gross body actions. Journal of biomechanics, 2, 429-441
    21. Chaffin, D.B., and Baker, W.H., 1970. A biomechanical model for analysis of
    symmetric sagittal plane lifting. AIIE Transactions, 2, 16-27
    22. Chaffin, D.B., 1988. Biomechanical modeling of the low back during load
    lifting. Ergonomics, 31(5), 685-697
    23. Chaffin, D.B., 1997. Development of computerized human static strength
    simulation model for job design. Human factors and ergonomics in
    manufacturing, 7(4), 305–322
    24. Chaffin, D.B., Andersson, B.J., and Martin, B.J., 1999. Occupational
    Biomechanics-Third edition. John Wiley & Sons, Inc.
    25. Chen, Y.L., 2000. Predicting the vertebral inclination of the lumbar spine.
    Ergonomics, 43(6), 744-751
    61
    26. Chen, Y.L., 2000. Accuracy and repeatability of the stick marker technique for
    external measurement of the sacral angle during trunk flexion. International
    journal of industrial ergonomics, 26, 101-107
    27. Cheng, C.K., and Kumar, S., 1991. A three-dimensional static torso model for
    the six human lumbar joints. International Journal of Industrial Ergonomics, 7,
    327-339
    28. Cheng, C.K., Chen, H.H., Kuo, H.H., Lee, C.L., Chen, W.J., and Liu, C.L.,
    1998. A three-dimensional mathematical model for predicting spinal joint force
    distribution during manual lifting. Clinical Biomechanics, 13(1), 59-64
    29. Cheng, C.K., Chen, H.H., Chen, C.S., Chen, C.L., and Chen, C.Y., 2000.
    Segment inertial properties of Chinese adults determined from magnetic
    resonance imaging. Clinical biomechanics, 15(8), 559-66
    30. Crisco, J.J., 1989. The biomechanical stability of the human lumbar spine:
    experimental and theoretical investigations. Dissertation. Yale University, New
    Haven, CT
    31. Crowninshield, R.D., and Brand, R.A., 1981. A physiologically based criterion
    of muscle force prediction in locomotion. J. Biomechanics, 14(11), 793-801
    32. David, S., 1994. A brief history of motion capture for computer character
    animation. In ”Character Motion Systems”, Notes for SIGGRAPH ’94, Course
    9.
    33. acter Motion Systems”, Notes for SIGGRAPH ’94, Course 9, 1994.
    34. Dempster, W.T., 1955. Space Requirements of the seated operator.
    WADC-TR-55-159, Aerospace Med. Res. Lab., Wright-Patterson AFB, Ohio
    35. Dempster, W.T., Sherr, L.A., and Priest, J.G., 1964. Conversion scales
    estimating humeral and femoral lengths and the lengths of functional segments.
    Hum. Biol, 36, 246-261
    62
    36. Drillis, R., and Contini, R., 1966. Body segment parameters. Tech. Rep. No.
    1166.03, New York University, New York, N.Y
    37. El-Bassoussi, M. M., 1974. A Biomechanical Dynamic Model for Lifting in the
    Sagittal Plane. Unpublished Ph.D. thesis (Industrial Engineering), Texas
    Technological University, Lubbock
    38. Freivalds, A., Chaffin, D.B., Garg, A., and Lee, K.S., 1984. A dynamic
    biomechanical evaluation of lifting maximum acceptable loads. J.
    Biomechanics, 17, 251-262
    39. Frymoyer, J., Pope, M., Clement, J., Wilder, D., MacPherson, B., and
    Ashikaga, T., 1983. Risk factors in low back pain: an epidemiologic survey. J
    Bone Joint Surg. Am, 65, 213-218
    40. Frymoyer, J.W., 1990. Magnitude of the problem. In Weinstein, J.O. and Weisel
    S.W. (eds). The lumbar spine, Philadelphia: W.B. Saunder
    41. Garg, A., and Chaffin, D.B., 1975. A biomechanic computerized simulation of
    human strength. AIIE Transactions, 1, 1-15
    42. Garg, A., and Moore, J.S., 1992. Epidemiology of low-back pain in industry.
    Occup Med, 7(4), 593-608
    43. Granata, G.P., and Marras, W.S., 1993. An EMG-Assisted Model of Loads on the
    Lumbar Spine During Asymmetric Trunk Extensions. Journal of Biomechanics,
    26(12), 1429-1438.
    44. Hall, S.J., 1991. Basic Biomechanics. 2nd edition, Mosby
    45. Hilton, A., Beresford, D., Gentils, T., Smith, R., Sun, W., and Illingworth, J.,
    2000. Whole-body modelling of people from multiview images to populate
    virtual worlds. Visual comput, 16(7), 411-436
    63
    46. Hughes, R.E., and Chaffin, D.B., 1955. The effect of strict muscle stress limits
    on abdominal muscle force predictions for combined torsion and extension
    loadings. J. Biomechanics, 28(5), 527-533
    47. Jin, K., Sorock, G.S., Courtney, T., Liang, Y., Yao, Z., Matz, S., and Ge, L.,
    2000. Risk factors for work-related low back pain in he People’s Republic of
    China. International Journal of Occupational & Environmental Health, 6(1),
    26-33
    48. Johanning, E., 2000. Evaluation and management of occupational low back
    disorders. Am J Ind Med, 37(1), 94-111
    49. Kromodihardjo, S., and Mital, A., 1986. Kinetic analysis of manual lifting
    activities : part 1 – development of a three-dimensional computer model.
    International journal of industrial ergonomics, 1, 77-90
    50. Kuo, H.H., 1996. A 3D dynamic biomechanical model of the human body.
    Dissertation, Institute of Biomechanical Engineering, National Yang-Ming
    University.
    51. Lavender, S.A., Andersson, B.J., Schipplein, O.D., and Fuentes, H.J., 2002.
    The effects of initial lifting height, load magnitude, and lifting speed on the
    peak dynamic L5/S1 moments. International Journal of Industrial Ergonomics,
    31, 51–59
    52. Lee, W., Gu, J., and Thalmann, M., 2000. Generating animatable
    three-dimensional virtual humans from photographs. Comput Graph Forum,
    19(3), 1-10
    53. Leskinen, T.P.J., Stalhammar, H.R., Kuorinka, I.A.A., and Troup, J.D.G.,
    1983a. A dynamic analysis of spinal compression with different lifting
    techniques. Ergonomics, 26, 595-604
    64
    54. Leskinen, T.P.J., Stalhammar, H.R., Kuorinka, I.A.A., and Troup, J.D.G.,
    1983b. The effect of inertial factors on spinal stress when lifting. Engineering
    in Medicine, 12, 87-89
    55. Lin, Y.H., Chen, C.S., Cheng, C.K., Chen, Y.H., Lee, C.L., and Chen, W.J.,
    2001. Geometric Parameters of the In Vivo Tissues at the Lumbosacral Joint of
    Young Asian Adults. Spine, 26(21), 2362–2367
    56. Lin, Y.H., 2002. The influence of static lifting postures on the force distribution
    on the spinal tissues at the lumbosacral joint. Dissertation, Institute of
    Biomechanical Engineering, National Yang-Ming University.
    57. Mahwah, N.J., 2002. Handbook of human factors testing and evaluation.
    Lawrence Erlbaum Associates, 188
    58. Marras, W.S., Jorgensen, M.J., Granata, K.P., and Wiand, B., 2000. Female and
    male trunk geometry : size and prediction of the spine loading trunk muscles
    derived from MRI. Clinical Biomechanics, 16, 38-46
    59. McGill, S.M., and Norman, R.W., 1985. Dynamically and statically determined
    low back moments during lifting. Journal of Biomechanics, 18(12), 877-885
    60. McGill, S.M., and Norman, R.W., 1986. Partitioning of the L4-L5 dynamic
    moment into disc, ligamentous and muscular components during lifting. Spine,
    11, 666-678
    61. Molumphy, M., Unger, B., and Jensen, G.M., 1985. Incidence of work-related
    low back pain in physical therapists. Phys Ther, 65, 482-486
    62. Morris, J.M., Lucas, D., and Bresler, B., 1961. Role of the trunk in stability of
    the spine. J Bone Joint Surg , 43A, 327-351
    63. Netter, F.H., 1989. Atlas of human anatomy. CIBA
    65
    64. NIOSH, 1991. Epidemiological basis for manual lifting guidelines. In: Scientific
    support documentation for the revised 1991 NIOSH lifting equation: technical
    contract reports. Springfield, VA: National Technical Information Service (NTIS),
    NTIS No. PB–91–226274.
    65. Park, K.S., and Chaffin, D.B., 1974. A biomechanical evaluation of two
    methods of manual load lifting. AIIE Transactions, 6, 105-113
    66. Plagenhoef, S.C., 1966. Methods for obtaining kinetic data to analyze human
    motions. Res. Q., 37, 1
    67. Schultz, A.B., and Andersson, G.B.J., 1981. Analysis of loads on the lumbar
    spine. Spine, 6(1), 76-82
    68. Schultz, A.B., and Andersson, G.B.J., Örtengren, R., Haderspeck, K.,
    Nachemson, A., 1982. Loads on the lumbar spine. The journal of bone and
    joint surgery, 64(5), 713-720
    69. Scott, D., 1995. Motion capture white paper. http://reality.sgi.com/jam_sb/
    mocap/MoCapWP_v2.0.html.
    70. Smith, J.L., and L.A., McLaughlin, 1982. A biomechanical analysis of
    industrial manual materials handlers. Ergonomics, 25, 299-308
    71. Tracy, M.F., Gibson, M.J., Szypryt, E.P., Rutherford, A., and Corlett, E.N., 1989.
    The Geometry of the Muscles of the Lumbar Spine Determined by Magnetic
    Resonance Imaging. Spine, 14, 186-193
    72. Tsuang, Y.H., Shih, T.F., Tai, H.C., Sun, J.S., Chen, P.Q., and Hang, Y.S., 1995.
    Trunk Muscle Geometry Determined from CT Scans. J. Orthop. Surg. ROC, 12,
    157-163
    73. Troup, J.D.G., 1977. Dynamics factors in the analysis of stoop and crouch
    lifting methods: A methodological approach to the development of sage
    materials handling standards. Orthopedic Clinics of North America, 8, 201-209
    66
    74. Van Der Burg, J.C.E., and Van Dieën, J.H., 2001. Underestimation of object
    mass in lifting does not increase the load on the lowback. Journal of
    biomechanics, 34, 1447-1453
    75. Van Dieën, J. H., and Toussaint, H. M., 1997. Evaluation of the Probability of
    Spinal Damage Caused by Sustained Cyclic Compression Loading. Human
    Factors, 39(3), 469-480
    76. Wilke, H.J., Neef, P., Hinz, B., Seidel, H., and Claes, L., 2001. Intradiscal
    pressure together with anthropometric data-a data set for the validation of
    models. Clinical Biomechanics, 16(1), 111-126

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE