簡易檢索 / 詳目顯示

研究生: 梁春昇
Chun-Sheng Liang
論文名稱: 含導電性鉛酸鋇薄膜之鐵電電容器之研究
Investigation of Conductive-BaPbO3-Based Ferroelectric Capacitors
指導教授: 吳振名
Jenn-Ming Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 240
中文關鍵詞: 鐵電薄膜非揮發記憶體氧化物電極鋯鈦酸鉛鉛酸鋇
外文關鍵詞: ferroelectric, thin film, nonvolatile memory, oxide electrode, Pb(Zr,Ti)O3, BaPbO3
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鉛酸鋇電極由於與鈣鈦礦結構的鐵電材料(如:鋯鈦酸鉛、鈦酸鍶鋇)之結構相同,因此具有提升鐵電材料特性之潛力。此外,由於鉛酸鋇含有鉛,因此與含鉛的鐵電材料結合應用時,可以避免因為在鐵電材料/電極界面形成缺鉛的界面層而產生電性劣化。本論文研究結果顯示,鉛酸鋇電極可以有效的改善電極/鋯鈦酸鉛界面和電極/鈦酸鍶鋇界面,進而提升電性表現。鉛酸鋇本身不具催化氫之特性,且可避免氫造成鐵電層劣化的情形發生,即使在經過400℃的氫氣氛熱處理,特性依舊沒劣化。
    (001)、(110)和(111)三種高優選取向的鋯鈦酸鉛薄膜都可經由適當緩衝層的選用,可在鉛酸鋇電極上成功地製作出來。其中,鋯鈦酸鉛/鉛酸鋇/釕(PZT/BPO/Ru)和鋯鈦酸鉛/鉛酸鋇/鉑/釕(PZT/BPO/Pt/ Ru)兩種疊層都適合用於單電晶體單電容(1T1C)的疊層結構,具有應用於高密度鐵電記憶體之潛力。此乃由於兩者具有避免位元與位元間差異過大與防止鉛、氧等元素擴散之能力。除了上述在矽基板上高優選取向的薄膜外,鉛酸鋇和鋯鈦酸鉛的磊晶薄膜在鋁酸鑭和鈦酸鍶基板上也成功地被鍍製出來。利用兩階段的方式,鉛酸鋇與鋯鈦酸鉛薄膜可分別在350℃與475℃鍍出磊晶膜。鋯鈦酸鉛磊晶膜最佳之殘留極化量與矯頑電場分別為35.54μC/cm2與102.67 kV/cm。


    The BaPbO3 (BPO) electrode has the potential in improving the performance of perovskite-type ferroelectric materials, such as Pb(Zr,Ti)O3 (PZT) and (Ba,Sr)TiO3 (BST) due to the similarity in crystal structure. Besides, BPO containing Pb benefits the Pb-based ferroelectric films for preventing the formation of Pb-deficient layer near ferroelectric/electrode interface and degradation of electrical properties. In this thesis, it is found that the BPO electrode improves the electrode/PZT and electrode/BST interfaces and results in the enhancement of electrical properties. The catalytically inactive BPO prevents the hydrogen-induced degradation in ferroelectric layer even after 400℃ forming gas annealing.
    With the aid of suitable template layers, the highly (001)-, (110)- and (111)-oriented PZT films can be fabricated on BPO. Among them, the PZT/BPO/Ru and PZT/BPO/Pt/Ru stacks have the potential for application in 1T1C stack structures for high density memory. Both stacks can decrease the bit-to-bit variations of polarization and prevent the diffusion of lead and oxygen. In addition to highly-oriented films on Si, the BPO and PZT films can grow epitaxially on LaAlO3 and SrTiO3 substrates at the temperatures as low as 350℃ and 475℃ with the two-step method. Well-saturated hysteresis loops can be obtained with the remanent polarization of 35.54μC/cm2 and coercive field of 102.67 kV/cm.

    ABSTRCT (Chinese)………………………………………………………I ABSTRCT (English)……………………………………………………II ACKNOWLEDGEMENT………………………………………………………III CONTENTS…….……………………………………………………………V LIST OF TABLES…………………………………………………………XI LIST OF FIGURES………………………………………………………XII CHAPTER 1 Introduction……………………………….………………1 1.1 Emerging non-volatile memories…………………………1 1.2 Development of ferroelectric memories………………………3 1.3 Motivation and objective of this research…………………7 CHAPTER 2 Background study………………………………………21 2.1 Lead Zirconate Titanate, PZT………………………………21 2.2 Barium strontium titanate, BST……………………………26 2.3 Electrode materials……………………………………………30 2.3.1 Metal …………………………………………………………32 2.3.1.1 Platinum (Pt) ……………………………………33 2.3.1.2 Iridium (Ir) …………………………………………35 2.3.1.3 Ruthenium (Ru) ……………………………………36 2.3.2 Rutile-type metal oxides……………………………………37 2.3.2.1 Iridium oxide (IrO2) ............................37 2.3.2.2 Ruthenium oxide (RuO2) ...........................38 2.3.3 Perovskite-type metal oxides……………………………40 2.3.3.1 Yttrium barium copper oxide (YBa2Cu3O7- x;YBCO)…………………………………………………40 2.3.3.2 Lanthanum strontium cobalt oxide (La1-xSrxCoO3; LSCO)……………………………………………………41 2.3.3.3 Lanthanum nickel oxide (LaNiO3; LNO) …………42 2.3.3.4 Strotium ruthenium oxide (SrRuO3; SRO) ………43 2.3.4 Other Oxides…………………………………44 2.3.4.1 Indium tin oxide (In2O3:Sn; ITO) ……………44 2.3.4.2 Lead ruthenate (Pb2Ru2O7-x; PRO) ………………45 2.3.4.3 Platinum oxide (PtOx) …………………………46 2.4 Barium metaplumbate (BaPbO3; BPO)………………………47 CHAPTER 3 Experimental Procedures ……………………………73 3.1 Substrate preparation…………………………………………73 3.1.1 Pt/Ti/SiO2/Si substrate…………………………………73 3.1.2 Ru/SiO2/Si substrate………………………………73 3.2 Fabrication of bottom and top electrode…………………73 3.2.1 Deposition of BaPbO3 thin film……………………………73 3.2.2 Deposition of LaNiO3 thin film…………………74 3.2.3 Deposition of Pt thin film………………………74 3.3 Fabrication of ferroelectric thin film………………75 3.3.1 Deposition of Pb(Zr,Ti)O3 thin film…………75 3.3.2 Deposition of (Ba,Sr)TiO3 thin film…………75 3.4 Characteristic measurements……………………………76 3.4.1 Structural analysis………………………………76 3.4.1.1 X-ray Diffraction (XRD) ………………76 3.4.1.2 Field Emission Scanning Electron Microscopy (FESEM) ………………………76 3.4.1.3 Atomic Force Microscopy (AFM) ………76 3.4.2 Compositional depth profile and chemical bonding………………………………………………76 3.4.2.1 Secondary Ion Mass Spectroscopy (SIMS) ………………………………………………………76 3.4.2.2 X-ray Photoelectron Spectroscopy (XPS) ………………………………………………………77 3.4.3 Electrical properties……………………………77 3.4.3.1 Dielectric properties …………………77 3.4.3.2 Ferroelectric properties………………78 3.4.3.3 leakage current……………………………78 CHAPTER 4 Characteristics of Pb(Zr,Ti)O3 Thin Films Grown on BaPbO3 with Pt and BaPbO3 Top Electrodes……85 4.1 Introduction……………………………………………………………85 4.2 Experiments………………………………………………………86 4.3 Results and Discussion..………………………………………87 4.3.1 Crystal structure and microstructure of BPO films…87 4.3.2 Crystal structure and microstructure of PZT films…88 4.3.3 Electrical properties of PZT films with Pt and BPO top electrodes………………………………………………89 4.3.4 Influence of FGA on BPO/PZT/BPO capacitor…93 4.4 Conclusions.…….………………………………………………97 CHAPTER 5 The Thickness Effect of BaPbO3 Layer on Structure and Electrical Properties of Highly (001)-textured Pb(Zr,Ti)O3 Films………………………………………119 5.1 Introduction……………………………………………………119 5.2 Experiments………………………………………………………120 5.3 Results and Discussion..……………………………………122 5.3.1 Formation of highly (100)-oriented BPO………………122 5.3.2 Crystal structure and microstructure of the PZT films……………………………………………………………122 5.3.3 Electrical properties of the PZT/BPO/LNO heterostructures……………………………………………124 5.4 Conclusions..……………………………………………………131 CHAPTER 6 Characterization of Highly (110)- and (111)- oriented Pb(Zr,Ti)O3 Films on BaPbO3 Electrode Using Ru Conducting Barrier…………145 6.1 Introduction……………………………………………………145 6.2 Experiments……………………………………………………147 6.3 Results and Discussion………………………………………147 6.3.1 BPO films deposited on Ru and Pt/Ru…………………147 6.3.2 Crystal structure and microstructure of the PZT films…………………………………………………………148 6.3.3 Electrical properties of the PZT films………………150 6.4 Conclusions……………………………………………………154 CHAPTER 7 Low Temperature Fabrication and Properties of Epitaxial BaPbO3 and Pb(Zr,Ti)O3/BaPbO3 Films on SrTiO3 and LaAlO3 Substrates……………167 7.1 Introduction…………………………………………………167 7.2 Experiments……………………………………………………169 7.3 Results and Discussion……………………………………170 7.3.1 Crystal structure and microstructure of BPO films…170 7.3.2 Crystal structure and microstructure of PZT films…171 7.3.3 Electrical properties of the PZT films………………174 7.4 Conclusions……………………………………………………177 CHAPTER 8 Characterization of (Ba,Sr)TiO3 Thin Films Grown on BaPbO3 Electrode……………………………………193 8.1 Introduction……………………………………………………193 8.2 Experiments……………………………………………………194 8.3 Results and Discussion………………………………………196 8.3.1 Crystal structure and microstructure of BST films…196 8.3.2 Electrical properties of the Pt/BST/BPO capacitors……………………………………………………198 8.3.3 Electrical properties of the BPO/BST/BPO capacitor …………………………………………………………………200 8.4 Conclusions………………………………………………………201 CHAPTER 9 Conclusions……………………………………………215 Reference……………………………………………………………217 Publication…………………………………………………………237

    [1] G. Muller, T. Happ, M. Kund, G.Y. Lee, N. Nagel, and R. Sezi, IEDM Tech. Dig., 567 (2004).
    [2] http://www.semiconductors.unaxis.com/en/SHUTTL_528.asp
    [3] M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Devices, Clarendon Press, Oxford, 87 (1977).
    [4] H. McAdams, R. Acklin, T. Blake, J. Fong, D. Lui, S. Madan, T. Moise, S. Narayan, N. Qian, Y. Qui, J. Roscher, A. Seshadri, S. Summerfelt, X. Du, J. Eliason, W. Kraus, R. Lanham, F. Li, C. Pietrzyk and J. Rickes, Symp. VLSI Circuits Dig. Tech. Papers, 175 (Kyoto, Japan, June 2003).
    [5] D.Wouters, CREMSI Workshop, 26.03.(2004).
    [6] Y. Fujisaki and H. Ishiwara, Mater. Res. Soc. Symp. Proc. 830, D2.1.1 (2005).
    [7] http://public.itrs.net/
    [8] D.Wouters, MRS fall meeting, Dec. 2 (2002), Boston.
    [9] B. Jaffe, W. R. Cooke Jr., and H. Jaffe, Piezoelectric Ceramics (Academic Press,
    New York, 1971).
    [10] W. Heywang and H. Thomann, Annu. Rev. Mater. Sci.,14, 27 (1984).
    [11] H. Thomann and W. Wersing, Ferroelectrics, 40, 189 (1982).
    [12] J. F. Scott and C. A. Araujo, Science, 246, 1400 (1989).
    [13] M. Sayer and K. Screenivas, Science, 247, 1056 (1990).
    [14] S. Watanabe and T. Fujiu, Appl. Phys. Lett., 66, 1481 (1995).
    [15] B. Jaffe, R.S. Roth, and S. Marzullo, J. Appl. Phys., 25, 809 (1954).
    [16] M.R. Soares, A.M.R. Senos, and P.Q. Mantas, Journal of the European Ceramic Society, 20, 321 (2000).
    [17] H.D. Chen, K.R. Udayakumar, C.J. Gaskey, and L.E. Cross, Appl. Phys. Lett., 67, 3411 (1995)
    [18] C.M. Foster, G.R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L.A. Wills, E. Carr, and J. Amano, Appl. Phys. Lett., 81, 2349 (1997)
    [19] R. Ramesh, H. Gilchrist, T. Sands, V.G. Keramidas, R. Haakenaasen, and D.K. Fork, Appl. Phys. Lett., 63, 3592 (1993).
    [20] R. Ramesh, W.K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J.M. Tarascon, V.G. Keramidas, D.K. Fork, J. Lee, and A. Safari, Appl. Phys. Lett., 61, 1537 (1992).
    [21] H.N. Al-Shareef, A.I. Kingon, X. Chen, K.R. Bellur, and O. Auciello, J. Mater. Res., 9, 2968 (1994).
    [22] S.M. Koo, L.R. Zheng, and K.V. Rao, J. Mater. Res., 14, 3833 (1999).
    [23] G. J. Norga, Laura Fe`, D. J. Wouters, and H. E. Maes, Appl. Phys. Lett., 76,
    1318 (2000).
    [24] T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, Appl. Phys. Lett., 65,
    1522 (1994).
    [25] S.H. Kim, D.Y. Park, H.J. Woo, D.S. Lee, J. Ha, and C. S. Hwang, J. Mater. Res., 17, 1735 (2002).
    [26] K. Lee, B.R. Rhee, C. Lee, Appl. Phys. Lett., 79,821 (2001).
    [27] W.S. Kim, J.W. Kim, H.H. Park, and H.N. Lee, Jpn. J. Appl. Phys., 39, 7097 (2000).
    [28] M. S. Chen, T.B. Wu, J.M. Wu, Appl. Phys. Lett. 68, 1430 (1996).
    [29] B.G. Chae , Y.S. Yang , S.H. Lee , M.S. Jang , S.J. Lee , S.H. Kim , W.S. Baek, S.C. Kwon, Thin Solid Films, 410, 107 (2002)
    [30] A.M. Dhote, S. Madhukar, W. Wei, T. Venkatesan, R. Ramesh, C.M. Cotell, Appl. Phys. Lett., 68, 1350 (1996).
    [31] J. Lee, R. Ramesh, V.G. Keramidas, W.L. Warren, G.E. Pike, J.T. Evans, Appl. Phys. Lett., 66, 1337 (1995).
    [32] J.T. Cheung, P.E.D. Morgan, D.H. Lowndes, X.Y. Zheng, J. Breen, Appl. Phys. Lett., 62, 2045 (1993).
    [33] R. Dat, D.J. Lichtenwalner, O. Auciello, A.I. Kingon, Appl. Phys. Lett., 64, 2673 (1994).
    [34] R. Ramesh, A. Inam, W.K. Chan, F. Tillerot, B. Wilkens, C.C. Chang, T. Sands, J.M. Tarascon and V.G. Keramidas, Appl. Phys. Lett., 59, 3542 (1991).
    [35] C.B. Eom, R.B. Van Dover, J.M. Phillips, D.J. Werder, J.H. Marshall, C.H. Chen, R.J. Cava, R.M. Fleming, D.K. Fork, Appl. Phys. Lett., 63, 2570 (1993).
    [36] J. Zeng, C. Lin, K. Li, J. Li, Appl. Phys. A, 69, 93 (1999).
    [37] A.K. Tagantsev, I. Stolichnov, E.L. Colla, and N. Setter, J. Appl. Phys., 90, 1387 (2001).
    [38] C.P. Araujo, J.F. Scott, and G.W. Taylor,”Ferroelectric Thin Films: Synthesis and Basic Properties”, p.223 (1996).
    [39] K.R. Bellur, H.N. Al-Shareef, O. Auciello, and A.I. Kingon, ISAF8 Proceedings, 448 (1992).
    [40] D.J. Lichtenwalner, R. Dat, O. Auciello, and A.I. Kingon, Ferroelectrics, 152, 97 (1994).
    [41] K.D. Gifford, H.N. Al-Shareef, O. Auciello, and A.I. Kingon, MRS Symp. Proc., 243, 191 (1992).
    [42] R. Ramesh, T. Sands, and V.G. Keramidas, J. Electronic Materials, 23, 19 (1994).
    [43] S. Bernstein, T.Y. Wong, Y. Kisler, and R. Tustison, J. Mater. Res., 8, 12 (1993).
    [44] Al-Shareef, K.R. Bellur, O. Auciello, and A.I. Kingon, Ferroelectrics, 152, 85 (1994).
    [45] Y. Masuda and T. Nozaka, Jpn. J. Appl. Phys., 43, 6576 (2004).
    [46] S. L. Swartz and V. E. Wood, Condensed Matter News 1, 4 (1992).
    [47] G. H. Haertling, J. Vac. Sci. Technol. A, 9, 414 (1991).
    [48] R. Ramesh and D. G. Schlom, Science, 296, 1975 (2002).
    [49] M. Suzuki, J. Ceram. Soc. Jpn.,103, 1099 (1995).
    [50] M. Kondo, K. Maruyama,K. Kurihara, Fujitsu Sci. Tech. J., 38, 46 (2002).
    [51] M. Tsukada, H. Yamawaki, and M. Kondo, Appl. Phys. Lett., 83, 4393 (2003).
    [52] Y.M. Chiang, D.P. Birnie, W.D. Kingery, “Physical Ceramics”, p.41 (1996).
    [53] V.V. Lemanov, E.P. Smirnova, P.P. Syrnikov, and E.A. Tarakanov, Phys. Rev. B, 54, 3151 (1996).
    [54] A.I. Kingon, S.K. Streiffer, C. Basceri, and S.R. Summerfelt: Mater. Res. Bull., 21, 18 (1995).
    [55] S.G. Yoon, J.C. Lee, and A. Safari: Integrat. Ferroelectr., 7, 329 (1995).
    [56] J. Im, O. Auciello, P.K. Baumann, S.K. Streiffer, D.K. Kaufman, and A.R. Krauss: Appl. Phys. Lett., 76, 625 (2000).
    [57] F.A. Miranda, F.W. Van Keuls, R.R. Romanofsky, and G. Subramanyam: Integrat. Ferroelectr., 22, 269 (1998).
    [58] A. Nazeri, M. Kahn, T. Kidd, J. Mater. Sci. Lett., 14, 1085 (1995).
    [59] D. Roy, S.B. Krupanidhi, Appl. Phys. Lett., 62, 1056 (1993).
    [60] K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.Q. Chen, D.G. Schlom, and C.B. Eom, Science, 306, 1005 (2004).
    [61] T. Kawakubo, K.Abe, S.Komatsu, K.Sane, N.Yanase, and H.Mochizuki, IEDM Tech. Dig., 695 (1996).
    [62] K. Ono, T. Horikawa, T. Shibano, N. Mikami, T. Kuroiwa, T. Kawahara, S. Matsuno, E Uchikawa, S. Satoh, and H. Abe, IEDM Tech. Dig., 803 (1998).
    [63] R.B. Khamankar, M.A. Kressley, M.R. Visokay, T. Moise, G. Xing, S . Nemoto, Y. Okuno, S.J. Fang, A.M. Wilson, J.F. Gaynor, T.Q.Hurd, D.L. Crenshaw, S. Surrunerfelt, and L. Colombo, IEDM Tech. Dig., 245 (1997).
    [64] A. Nitayama, Y.Kohyama, and K. Hieda, IEDM Tech. Dig., 355 (1998).
    [65] O. G. Vendik, Ferroelectrics in Microwave Technology (in Russian). Moscow, Russia: Sov. Radio, 1979.
    [66] R.W. Babbitt, T. E. Koscica, andW. C. Drach, Microwave J., 35, 63 (1992).
    [67] V. K. Varadan, D. K. Ghodgoankar, V. V. Varadan, J. F. Kelly, and P. Glikerdas, Microwave J., 35, 116 (1992).
    [68] S. Das, Microwaves & RF, 34, 93 (1995).
    [69] F. A. Miranda, C. H. Mueller, C. D. Cubbage, K. B. Bhasin, R. K. Singh, and S. D. Harkness, IEEE Trans. Appl. Superconduct., 5, 3191 (1995).
    [70] H.-D. Wu, Z. Zhang, F. Barnes, C. M. Jackson, A. Kain, and J. D. Cuchiaro, IEEE Trans. Appl. Superconduct., 4, 156 (1994).
    [71] A. Outzourhit, J. U. Trefny, T. Kito, B. Yarar, A. Naziripour, and A. M. Hermann, Thin Solid Films, 259, 218 (1995).
    [72] S. Sengupta, L. C. Sengupta, D. P. Vijay, and S. B. Desu, Integr. Ferroelect., 13, 239 (1996).
    [73] C. Basceri, S.K. Streiffer, A.I. Kingon, and R. Waser, J. Appl. Phys., 82, 2497 (1997).
    [74] Y.A. Jeon, E.S. Choi, T.S. Seo, and S.G. Yoon, Appl. Phys. Lett., 79, 1012 (2001).
    [75] C.S. Hwang, B.T. Lee, C.S. Kang, K.H. Lee, H.J. Cho,H. Hideki, W.D. Kim, S.I. Lee, and M.Y. Lee, J. Appl. Phys., 85, 287 (1999).
    [76] B. Gnade, presented at NATO Advanced Study Institute on Electroceramic Thin Films, Sapri, Italy, (June, 1994).
    [77] J.F. Scott, Ferroelectr. Rev., 1, 1 (1998).
    [78] S.M. Sze, “Phys. of Semiconductor Devices ”, 2nd ed. New York: Wiley, p.251 (1981).
    [79] G.W. Dietz, W. Antpijhler M. Klee, and R. Waser, J. Appl. Phys., 78, 6113 (1995).
    [80] M.S. Tsai, S.C. Sun, and T.Y. Tseng, IEEE Trans. on Electron Devices, 46, 1829 (1999).
    [81] S. Ezhilvalavan and T. Y. Tseng, Mater. Chem. Phys. 65, 227 (2000).
    [82] K. Numta, A. Aoki, Y. Fukuda, A. Nishimura, and A. Schleisman, Electron. Lett., 29, 2099 (1993).
    [83] L.N. Chapin and S.A. Myers, Mater. Res. Soc. Symp. Proc., 200, 153 (1990).
    [84] S.Y. Cha, B.T. Jang, D.H. Kwak, C.H. Shin and H.C. Lee, Integr. Ferroelect., 17, 187 (1997).
    [85] K. Aoki, Y. Fukuda, K. Numata and A. Nishimura, Jpn. J. Appl. Phys., 34, 5250 (1995).
    [86] K.B. Lee, S. Tirumala, and S.B. Desu, Appl. Phys. Lett., 74, 1484 (1999).
    [87] R.D. Frampton, E.A. Irene, F.M. d’Heurle, J. Appl. Phys., 62, 2972 (1987).
    [88] T. Nakamura, Y. Fujimori, N. Izumi and A. Kamisawa, Jpn. J. Appl. Phys., 37, 1325 (1998).
    [89] T. Nakamura, Y. Nakao, A. Kamisawa and H. Takasu, Jpn. J. Appl. Phys., 33, 5207 (1994).
    [90] R.S. Chen and Y.S. Huang, Y.M. Liang, C.S. Hsieh, D.S. Tsai, and K.K. Tiong, Appl. Phys. Lett., 84, 1552 (2004).
    [91] K. Maki, B.T. Liu, H. Vu, V. Nagarajan, R. Ramesh, Y. Fujimori, T. Nakamura, and H. Takasu, Appl. Phys. Lett., 82, 1263 (2003).
    [92] J.F. Scott, Jpn. J. Appl. Phys., 38, 2272 (1999).
    [93] L. Krusin-Elbaum, M. Wittmer, and D.S. Yee, Appl. Phys. Lett., 50, 1879 (1987).
    [94] M.L. Green, M.E. Gross, L.E. Papa, K.J. Schnoes, and D. Brasen, J. Electrochem. Soc., 132, 2677 (1985).
    [95] T. Watanabe, H. Funakubo, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, Y. Noguchi, and M. Miyayama, Appl. Phys. Lett., 81, 1660 (2002).
    [96] C.W. Law, K.Y. Tong, J.H. Li, K. Li, and M.C. Poon, Thin Solid Films, 354, 162 (1999).
    [97] H.N. Al-Shareef, B.A. Tuttle, W.L. Warren, T.J. Headley, D. Dimos, J.A. Voigt,
    and R.D. Nasby, J. Appl. Phys., 79, 1013 (1996).
    [98] H.N. Al-Shareef, K.R. Bellur, O. Auciello, and A.I. Kingon, Thin Solid Films, 256, 73 (1995).
    [99] H.N. Al-Shareef, K.R. Bellur, and A.I. Kingon, Appl. Phys. Lett., 66, 239 (1995).
    [100] K.W. Lee and W.J. Lee, Jpn. J. Appl. Phys. 41, 6718 (2002).
    [101] S. Urazhdin, W.K. Neils, S.H. Tessmer, N.O. Birge, and D.J. Van Harlingen, Supercond. Sci. Technol. 17, 88 (2004).
    [102] R.J. Cava, B. Batlogg, R.B. van Dover, D.W. Murphy, S. Sunshine, T. Siegrist, J.P. Remeika, S. Zahurak, and G.P. Espinosa, Phys. Rev. Lett., 58, 1676 (1987).
    [103] R. Ramesh, US Patent No. 5,270,298 (August, 1992).
    [104] M. Hawley, I.D. Raistrick, J.G. Beery, and R.J. Houlton, Science, 251, 1587 (1991).
    [105] J.T. Cheung, P.E.D. Morgan, D.H. Lowndes, X-Y Zheng, and J. Breen, Appl. Phys. Lett., 62, 2045 (1993).
    [106] B. Nagaraj, S. Aggarwal, T. K. Song, T. Sawhney, and R. Ramesh, Phys. Rev. B, 59, 16022 (1999).
    [107] G.H. Jonker and J.H. Van Saten, Physica, 19, 120 (1953).
    [108] J.T.Cheung, P.E.D. Morgan, R. Neurogankar, “Proceedings of the Fourth International Symposium on Integrated Ferroelectrics”, 158 (1992).
    [109] Y.W. Liu, Master Thesis, Materials Science and Engineering, National Tsing Hua University, p.33 (1996)
    [110] G.D. Hu, I.H. Wilson, J.B. Xu, C.P. Li, and S.P. Wong, Appl. Phys. Lett., 76, 1758 (2000).
    [111] A.D. Li, C.Z. Ge, P. Lu, and N.B. Ming, Appl. Phys., Lett. 68, 1347 (1996).
    [112] C.C. Yang, M.S. Chen, T.J. Hong, C.M. Wu, J.M. Wu, and T.B. Wu, Appl. Phys. Lett., 66, 2643 (1995).
    [113] N. Wakiya, T. Azuma, K. Shinozaki, and N. Mizutani, Thin Solid Films, 410, 114 (2002).
    [114] X.J. MengU, Z.X. Ma, J.L. Sun, L.X. Bo, H.J. Ye, S.L. Guo, J.H. Chu, Thin Solid Films, 372, 271 (2000).
    [115] S.L. Lung, C.L. Liu, S.S. Chen, S.C. Lai, C.W. Tsai, T.T. Sheng, T. Wang, S. Pan, T.B. Wu, R. Liu, IEDM Tech. Dig., 275 (2001).
    [116] G.C. Chao and J.M. Wu, Jpn. J. Appl. Phys., 40, 1306 (2001).
    [117] C. Yoshida, A. Yoshida, and H. Tamura, Appl. Phys. Lett., 75, 1449 (1999).
    [118] W. Bensch, H.W. Schmalle, and A. Reller, Solid State Ionic, 43, 171 (1990).
    [119] I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, and M. Tsukada, Appl. Phys. Lett., 75, 1790 (1999).
    [120] K.H. Lee, H.W. Jang, K.B. Kim, Y.H. Tak, and J.L. Lee, J. Appl. Phys., 95, 586 (2004).
    [121] K. Ishibashi, K. Watabe, N. Hosokawa, Thin Solid Films, 281, 198 (1996).
    [122] L.D. Madsen, L. Weaver, J. Electron. Mater., 21, 93 (1992).
    [123] A.V. Rao, S.A. Mansour, A.L. Bement, Mater. Lett., 29, 255 (1996).
    [124] J.J. Randall, R. Ward, J. Amer. Chem. Soc., 81, 2629 (1959).
    [125] J.M. Longo, P.M. Raccah, J.B. Goodenough, Mat. Res. Bull., 4, 191 (1969).
    [126] A.W. Sleight, Mat. Res. Bull., 6, 775 (1971).
    [127] S.N. Ryoo, S.G. Yoon, and S.H. Kim, Appl. Phys. Lett., 83, 2880 (2003).
    [128] N.J. Seong, K.J. Choi, S.G. Yoon, Thin Solid Films, 468, 100 (2004).
    [129] K. Lee, B.R. Rhee, and C. Lee, Appl. Phys. Lett., 79, 821 (2001).
    [130] C.L. Liu, Z.Y. Lee, T.B. Wu, S.L. Lung, and R. Liu, Jpn. J. Appl. Phys., 41, 6054 (2002).
    [131] T.P. Liu, W.P. Huang, and T. B. Wu, J. Vac. Sci. Technol. A, 21, 502 (2003).
    [132] Y.C. Chen, Y.M. Sun, J.Y. Gan, Thin Solid Films, 460, 25 (2004).
    [133] C.K. Huang, Ph.D Thesis, Materials Science and Engineering, National Tsing Hua University, p.51, 124 (2005).
    [134] C.K. Huang and T.B. Wu, Appl. Phys. Lett., 83, 3147 (2003).
    [135] M. H. Kim, T. S. Park, D. S. Lee, and E. Yoon, J. Mater. Res. 14, 634 (1999).
    [136] G. Wagner, H. Binder, Z. Anorg. Allgem. Chem. 12, 298 (1959).
    [137] R.J. Cava, H. Takagi, H.W. Zandbergen, B. Hessen, J.J. Krajewski, W.F. Peck Jr, Phys. Rev. B, 46, 14101 (1992).
    [138] W.T. Fu, H.W. Zandbergen, Q. Xu, J.M. van Ruitenbeek, L.J. de Jongh, G. van Tendeloo, Solid State Commun., 70, 1117 (1989).
    [139] C.N.R. Rao, P. Ganguli, M.S. Hegde, D.D. Sarma, J. Am. Chem. Soc., 109, 6893 (1987).
    [140] H. Ikushima, S. Hayakawa, Solid State Electron., 9, 921 (1966).
    [141] R.D. Shannon, P.E. Bierstedt, J. Am. Ceram. Soc., 53, 635 (1970).
    [142] L.F. Matheiss, Phys. Rev. B, 42, 359 (1990).
    [143] T. Azuma, K. Yumoto, S. Takahashi, and M. Kuwabara, Jpn. J. Ceram. Soc., 102, 848 (1994).
    [144] R.J. Cava, B. Batlogg, G.P. Espinosa, A.P. Ramirez, J.J. Krajewski, W.F. Peck, Jr., and A.S. Cooper, Nature, 339, 291 (1989).
    [145] A.W. Sleight, J.L. Gillson, and P.E. Bierstedt, Solid State Commun., 17, 27 (1975).
    [146] M. Suzuki, Y. Enomoto, T. Murakami, T. Inamura, J. Appl. Phys., 53, 1622 (1982).
    [147] V.V. Bogatko and Y.N. Venevtsev, Sov. Phys. Solid State, 22, 705 (1980).
    [148] A.A. Verheijn, W.T. Fu, J.M. van Ruitenbeek, A. Smits, Q. Xu, and L.J. De Jongh, Solid State Commun., 71, 573 (1989).
    [149] L.F. Mattheiss, D.R. Hamann, Phys. Rev. B, 28, 4227 (1983).
    [150] T. Nitta, K. Nagase, S. Hayakawa, and Y. Lida, J. Am. Ceram. Soc. 48, 642 (1965).
    [151] F.P. Skeele, R.E. Newnham, L.E. Cross, J. Am. Ceram. Soc., 71, C263 (1988).
    [152] Y.H. Hsieh and S.L. Fu, IEEE Trans. Compon. Hybrid Manuf. Technol., 15, 348 (1992).
    [153] W.H. Kao, S.L. Haberichter and K.R. Bullock, J. Electrochem. Soc., 139, L105 (1992).
    [154] M. Kuwabara, J. Mater. Sci. Lett., 8, 411 (1989).
    [155] M. Kuwabara, T. Kuroda, S. Takahashi, and T. Azuma, Mater. Res. Soc. Symp. Proc., 271, 365 (1992).
    [156] C.S. Liang and J.M. Wu, and M.C. Chang, Appl. Phys. Lett., 81, 3624 (2002).
    [157] Y.R. Lou and J.M. Wu, Appl. Phys. Lett., 79, 3669 (2001).
    [158] Operation Manual of the TF Analyzer 2000, Aixacct Systems GmbH, Germany.
    [159] H.M. Duiker, P.D. Beale, J.F. Scott, C.A. Paz de Araujo, B.M. Melnick, J.D. Cuchiaro, and L.D. McMillan, J. Appl. Phys., 68, 5783 (1990).
    [160] C. Verdier, F.D. Morrison, D.C. Lupascu, and J.F. Scott, J. Appl. Phys., 97, 024107 (2005).
    [161] S. Aggarwal, S.R. Perusse, C.W. Tipton, R. Ramesh, H.D. Drew, T. Venkatesan, D.B. Romero, V.B. Podobedov, and A. Weber, Appl. Phys. Lett., 73, 1973 (1998).
    [162] J. K. Lee, Y. Park, and I. Chung, J. Appl. Phys., 92, 2724 (2002).
    [163] J.P. Han and T.P. Ma, Appl. Phys. Lett., 71, 1267 (1997).
    [164] Y. Shimamoto, K. Kushida-Abdelghafar, H. Miki, and Y. Fujisaki, Appl. Phys. Lett., 70, 3096 (1997).
    [165] S.Y. Cha and H.C. Lee, Jpn. J. Appl. Phys., 38, L1128 (1999).
    [166] K.K. Abdelghafar, M. Hiratani and Y. Fujisaki, J. Appl. Phys., 85, 1069 (1999).
    [167] M. Hiratani, Y. Matsui, K. Imagawa, and S. Kimura, Jpn. J. Appl. Phys., 38, L1275 (1999).
    [168] Y.B. Kim, J.H. Park, D.H. Hong, and D.K. Choi, C.Y. Yoo, and H. Horii, J. Appl. Phys., 93, 9212 (2003).
    [169] A.K. Tagantsev and I.A. Stolichnov, Appl. Phys. Lett., 74, 1326 (1999).
    [170] A. Gruverman, H. Tokumoto, A. S. Prakash, S. Aggarwal, B. Yang, M. Wuttig, R. Ramesh, and O. Auciello, Appl. Phys. Lett., 71, 3492 (1997).
    [171] J. M. Benedetto, R. A. Moore, and F. B. McLean, J. Appl. Phys., 75, 460 (1994).
    [172] T. Mihara and H. Watanabe, Jpn. J. Appl. Phys., 34, 5664 (1995).
    [173] M. Erneta and H.A. Stoeckler, J. Am. Ceram. Soc., 56, 394 (1973).
    [174] H. Adachi, T. Mitsuyu. O. Yamajaki, and K. Wasa, J. Appl. Phys., 60, 736 (1986).
    [175] J. Chen, K. R. Udayakumar, K. G. Brooks, and L. E. Cross, J. Appl. Phys., 71, 4465 (1992).
    [176] R. Ramesh, W. K Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, and V. G. Keramidas, Appl. Phys. Lett., 61,1537(1992) .
    [177] H.N. Al-Shareef, A.I. Kingon, X. Chen, K.R. Bellur , and O. Auciello, J. Mater. Res., 9, 2968 (1994).
    [178] S.H. Kim, J. G. Hong, S. K. Streiffer, and A. I. Kingon, J. Mater. Res., 14, 1018 (1999).
    [179] C.W. Law, K.Y. Tong, J.H. Li, K. Li, M.C. Poon, Thin Solid Films, 354, 162 (1999).
    [180] Kim H, Kim JH, and Choo K, Integrated ferroelectrics, 64, 125 (2004).
    [181] R. Ramesh, US Patent No. 5,270,298 (August, 1992).
    [182] I.D. Kim and H.G. Kim, Jpn. J. Appl. Phys., 40, 2357 (2001).
    [183] M.J. Shyu, T.J. Hong, T.J. Yang, and T.B. Wu, Jpn. J. Appl. Phys., 34, 3647 (1995).
    [184] H. Toyoda, T. Kawanoue, M. Hasunma, H. Kaneko and M. Miyauchi, Proc. 32nd Annu. Reliability Physics Symp., (IEEE, New York, 1994) p. 178.
    [185] N. Floquet, J. Hector, and P. Gaucher, J. Appl. Phys., 84, 3815 (1998).
    [186] W.J. Lee, H.G. Kim, and S.G. Yoon, J. Appl. Phys., 80, 5891 (1996).
    [187] J.K. Yang, W.S. Kim, and H.H. Park, Appl. Surf. Sci., 169–170, 544 (2001).
    [188] J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee, and J. U. Bu, Appl. Phys. Lett., 75, 3183 (1999).
    [189] J. Kakalios, R. A. Street, and W. B. Jackson, Phys. Rev. Lett., 59, 1037 (1987).
    [190] J. S. Speck, A. Seifert, W. Pornpe, and R. Ramesh, J. Appl. Phys., 76, 477 (1994).
    [191] V. Bornand, S. Trolier-McKinstry, K. Takemura, and C. A. Randall, J. Appl. Phys., 87, 3965 (2000).
    [192] Y. Masuda and T. Nozaka., Jpn. J. Appl. Phys., 43, 6576 (2004).
    [193] Y. K. Wang, T. Y. Tseng, and P. Lin, Appl. Phys. Lett., 80, 3790 (2002).
    [194] Y. Abe., M. Kawamura, and K. Sasaki, Jpn. J. Appl. Phys., 41, 6857 (2002).
    [195] Y.K. Wang and T.Y. Tseng, and P. Lin, Electrochem. Solid-State Lett., 7, F1 (2004).
    [196] Y. Matsui, Y. Nakamura, Y. Shimamoto, and M. Hiratani, Thin Solid Films, 437, 51 (2003)
    [197] D.J. Wouters, G. Willems, E.G. Lee, and H.E. Maes, Integr. Ferroelectr., 15, 79 (1997).
    [198] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, Appl. Phys. Lett., 65, 1018 (1994).
    [199] I.G. Jenkins, T.K. Song, S. Madhukar, A.S. Prakash, S. Aggarwal, and R. Ramesh, Appl. Phys. Lett., 72, 3300 (1998).
    [200] A. Gruverman, H. Tokumoto, A.S. Prakash, S. Aggarwal, B. Yang, M. Wuttig, R. Ramesh, and O. Auciello, Appl. Phys. Lett., 71, 3492 (1997).
    [201] A. Gruverman and M. Tanaka, J. Appl. Phys., 89, 1836 (2001).
    [202] A. Ghosh and A. K. Raychaudhuri, Phys. Rev. B, 64, 104304 (2001).
    [203] R. Moazzami, C. Hu, W.H. Shepherd, IEEE Trans. Electron Devices, 39, 2044 (1992).
    [204] P. Gerber, C. Kügeler, U. Ellerkmann, P. Schorn, U. Böttger, and R. Waser, Appl. Phys. Lett. 86, 112908 (2005).
    [205] M. S. Chen, T. B. Wu, and J. M. Wu, Appl. Phys. Lett., 68, 1430 (1996).
    [206] T. Yu, Y.F. Chen, Z.G. Liu, S.B. Xiong, L. Sun, X.Y. Chen, L.J. Shi, and N.B. Ming, Appl. Phys. Lett., 69, 2092 (1996).
    [207] J.H. Kim, Y. Kim, A.T. Chien, and F.F. Lange, J. Mater. Res., 16, 1729 (2001).
    [208] P. Tiwari, T. Zheleva, and J. Narayan, Appl. Phys. Lett., 63, 30 (1993).
    [209] F. Wang and S. Leppavuori, J. Appl. Phys., 82, 1293 (1997).
    [210] J. Hong, H.W. Song, H.C. Lee, W.J. Lee, and K. No, J. Appl. Phys., 90, 1962 (2001).
    [211] K. Nagashima, M. Aratani, and H. Funakubo, J. Appl. Phys., 89, 4517 (2001).
    [212] K. Saito, T. Kurosawa, T. Akai, T. Oikawa, and H. Funakubo, J. Appl. Phys., 93, 545 (2003).
    [213] M. P. McNeal, S. J. Jang, and R. E. Newnham, J. Appl. Phys., 83, 3288 (1998).
    [214] A. A. Sirenko, I. A. Akimov, J. R. Fox, A. M. Clark, H. C. Li, W. D. Si, and X. X. Xi, Phys. Rev. Lett., 82, 4500 (1999).
    [215] Z. G. Ban and S. P. Alpay, J. Appl. Phys., 93, 504 (2003).
    [216] A. H. Mueller, N. A. Suvorova, E. A. Irene, O. Auciello, and J. A. Schultz, J. Appl. Phys., 93, 3866 (2003).
    [217] R. Dat, D. J. Lichtenwalner, O. Auciello, and A. I. Kingon, Appl. Phys. Lett., 64, 2673 (1994).
    [218] X. Zhu, W. Peng, J. Li, Y. Chen, H. Tian, X. Xu, and D. Zheng, J. Appl. Phys., 97, 14108 (2005).
    [219] G.S. Wang, J.G. Cheng, X.J. Meng, J. Yu, Z.Q. Lai, J. Tang, S.L. Guo, J.H. Chu, G. Li, and Q.H. Lu, Appl. Phys. Lett., 78, 4172 (2001).
    [220] K.H. Ahn, S.S. Kim, and S. Baik, J. Appl. Phys., 92, 421 (2002).
    [221] H. Hu and S.B. Krupanidhi, J. Mater. Res., 9, 1484 (1994).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE