簡易檢索 / 詳目顯示

研究生: 林冠榮
Guan Rong Lin
論文名稱: 基於漸進式資料趨勢分析之無線感測網路節能技術
Adaptive Power-Saving Techniques for WSN based on Incremental Data Trend Analysis
指導教授: 陳良弼
Arbee L. P. Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 32
中文關鍵詞: 感測器資料趨勢省電週期
外文關鍵詞: sensor, trend, power-saving, period
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測器是使用電池當作它的電源,由於受限於所處環境,例如森林生態的監測,它們通常無法再充電。當在無法開源的狀況下,如何節流(省電)是相當重要的議題。

    傳統的感測器資料管理系統,如TinyDB與TAG,收集資料的方式為定期地偵測環境變數並且回傳到資料管理系統。在一般的感測應用中,如溫度光度監測,一天內的溫度變化,可能會有週期性。傳統的省電機制著重於節省傳輸的耗電,並沒有利用此資料重複出現的特性。有鑑於此,我們提出一個針對歷史資料進行趨勢分析的演算法,並利用找出的週期特性,來動態的調整探測時間點,節省不必要的感測能源消耗,達到節省探測的耗損,同時也能節省傳輸的耗電。

    我們的系統先收集一段時間資料,之後開始計算其週期性,利用此週期將歷史資料收集在一起,並分析資料的趨勢當作未來估計資料的依據。建立好歷史資料趨勢模型後,我們假定每個時間點上的資料分佈呈現常態分布,過去資料有些時間點的資料分佈太過離散,因此該時間點上的資料將無法有效的估算資料,所以未來相對應時間點必須要實際去探測資料;有些時間點的資料比較集中在平均值的附近,因此我們可以回報過去資料該時間點的平均值當作估計值,藉以代替實際探測的耗費。利用Chebyshev’s Inequality我們可以保證每一筆回報的估計值,在一定的信心水準之下,會小於一個誤差範圍。

    實驗證明,在將近30%的省電率中,錯誤率僅不到3%,証明了我們的系統在省電率與錯誤率之間有非常好的平衡。因此,我們的系統應用在無線感測器網路上,將可有效的節省探測的耗電,同時也避免了不必要的傳輸。


    Wireless sensor networks have received considerable attentions in recent years and played an important role in monitoring applications. Sensor nodes usually have limited supply of energy. Therefore, one of major design considerations for sensor network applications is to conserve the energy for sensor nodes.

    In most sensor applications, communication is considered as the factor requiring the largest amount of energy. Therefore, existing approaches for conserving energy mainly focus on reducing the communication of sensor networks. However, as the applications of sensor networks continue to expand, we find that in some sensor applications sensing operations dominate the use of the energy, making existing approaches are not good for use.

    Therefore, in this study, we propose a novel energy-conserving approach for sensor networks. Our approach builds on the observation that the values of the collected sensor data exhibit periodical patterns over time. We exploit the periodical patterns to construct prediction models for sensor data and use the constructed models to approximately answer queries over sensor networks.

    In addition, we provide theoretical analyses for the use of the proposed approach, and show that a tight bound of the accuracy of reported value is guaranteed. Finally, we conduct a comprehensive experiment to validate the proposed approach. The experiment results show that our approach significantly reduces the sensing cost as well as the communication cost.

    Abstract ii Acknowledgements iii Table of Contents iv List of Figures v Chapter 1. Introduction 1 Chapter 2. Related Work 5 2.1 Power-saving in WSN 5 2.1.1 In-Networking Processing 5 2.1.2 Prediction Model 6 2.1.3 Other Strategies 7 2.2 Periodicity Mining 9 Chapter 3. Preliminary 11 3.1 AMDF Algorithm 11 3.2 Query Format 13 Chapter 4. Methodology 14 4.1 Approach Overview 14 4.1.1 Input Data 14 4.1.2 Observation 14 4.2 Framework 16 4.2.1 MCP 17 4.2.2 QAP 19 4.2.3 Data Accuracy 21 4.2.4 Reporting Data 22 4.3 Incremental Update Process 24 4.4 Reconstruct Model 25 Chapter 5. Results 26 5.1 Experimental Setting 26 5.2 Saving Ratio and Error Ratio 27 5.2.1 Variable: Tolerance 27 5.2.2 Variable: Confidence 28 5.2.3 Variable: Sensing Probability 29 5.3 Discussion 30 Chapter 6. Conclusion / Future Work 31 Reference 32

    [1]. Mohamed Aly, Nicholas Morsillo, Panos K. Chrysanthis, and Kirk Pruhs, "Zone sharing: a hot-spots decomposition scheme for data-centric storage in sensor networks" In Proceedings of the Workshop on Data Management for Sensor Networks, pages 21-26, 2005.
    [2]. David Chu, Amol Deshpande, Joseph M. Hellerstein, and Wei Hong, "Approximate Data Collection in Sensor Networks using Probabilistic Models" In Proceedings of the International Conference on Data Engineering, page 48, 2006.
    [3]. Antonios Deligiannakis, Yannis Kotidis, and Nick Roussopoulos, "Compressing Historical Information in Sensor Networks" In Proceedings of the SIGMOD Conference, pages 527–538, 2004.
    [4]. Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph M. Hellerstein, and Wei Hong, "Model-based Approximate Querying in Sensor Networks" In Proceedings of the Journal on Very Large Data Bases, page 417-443, 2005.
    [5]. Amol Deshpande, Carlos Guestrin, and Samuel Madden, "Using Probabilistic Models for Data Management in Acquisitional Environments" In Proceedings of the Conference on Innovative Data Systems Research, page 317-328, 2005.
    [6]. Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid, "Periodicity detection in time series databases" In Proceedings of the Transactions on Knowledge and Data Engineering, page 875-887, 2005.
    [7]. Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid "WARP: Time Warping for Periodicity Detection" In Proceedings of the International Conference on Data Mining, page 138-145, 2005.
    [8]. Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid, "STAGGER: Periodicity Mining of Data Streams using Expanding Sliding" In Proceedings of the International Conference on Data Mining, page 188-199, 2006.
    [9]. Johannes Gehrke and Samuel Madden, "Query Processing in Sensor Networks" In Proceedings of International Conference on Pervasive Computing, 2004.
    [10]. Joseph M. Hellerstein, Wei Hong, Samuel Madden, and Kyle Stanek, "Beyond Average: Toward Sophisticated Sensing with Queries" In Proceedings of the Workshop on Information Processing in Sensor Networks, page 63-79, 2003.
    [11]. Ankur Jain, Edward Y. Chang, and YuanFang Wang, "Adaptive stream resource management using Kalman filters" In Proceedings of the SIGMOD Conference, page 11–22, 2004.
    [12]. Samuel Madden, Robert Szewczyk, Michael J. Franklin, and David Culler, "Supporting Aggregate Queries Over Ad-Hoc Wireless Sensor Networks" In Proceedings of the Workshop on Mobile Computing and Systems Applications, page 49-58, 2002.
    [13]. Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong, "The Design of an Acquisitional Query Processor for Sensor Networks" In Proceedings of the SIGMOD Conference, page 491-502, 2003.
    [14]. Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong, "TAG: a Tiny Aggregation Service for Ad-Hoc Sensor Network" In Proceedings of the Symposium on Operating Systems Design and Implementation, 2002.
    [15]. Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong, "TinyDB: An Acquisitional Query Processing System for Sensor Networks" In Proceedings of the Transactions on Database Systems, 30(1), page 122-173, 2005.
    [16]. Amit Manjhi, Suman Nath, and Phillip B. Gibbons, "Tributaries and Deltas: Efficient and Robust Aggregation in Sensor Network Streams" In Proceedings of the SIGMOD Conference, pp 287-298, 2005.
    [17]. Chris Olston, Jing Jiang, and Jennifer Widom, "Adaptive Filters for Continuous Queries over Distributed Data Streams" In Proceedings of the SIGMOD Conference, page 563-574, 2003.
    [18]. M. J. Ross, H. L. Shaffer, A. Cohen, R. Freudberg, and H. J. Manley, "Average magnitude difference function pitch extractor" IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-22, page 353-362, 1974.
    [19]. Adam Silberstein and Jun Yang, "Many-to-Many Aggregation for Sensor Networks" In Proceedings of the International Conference on Data Engineering, page 986-995, 2007.
    [20]. Daniela Tulone and Samuel Madden, "An Energy-efficient Querying Framework for Detecting Node Similarities in Sensor Networks" In Proceedings of the Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, page 291-300, 2006.
    [21]. Daniela Tulone and Samuel Madden, "PAQ: Time series forecasting for approximate query answering in sensor networks" In Proceedings the European Workshop on Wireless Sensor Networks, page 21-37, 2006.
    [22]. Rebecca Willett, Aline Martin, and Robert Nowak, "Backcasting: Adaptive Sampling for Sensor Networks" In Proceedings of the Symposium on Information Processing in Sensor Networks, pages 124-133, 2004.
    [23]. Alec Woo, Samuel Madden, and Ramesh Govindan, "Networking Support for Query Processing in Sensor Networks" In Proceedings of the Communications of the ACM, page 47-52, 2004.
    [24]. Yong Yao and Johannes Gehrke, "Query Processing for Sensor Networks" In Proceedings of the Conference on Innovative Data Systems Research, 2003.
    [25]. Yong Yao and Johannes Gehrke, "The cougar approach to in-network query processing in sensor networks" In SIGMOD Record, 31(3), page 9-18, 2002.
    [26]. Jyh-Shing Roger Jang, "Audio Signal Processing and Recognition" (in Chinese) available at the links for on-line courses at the author's homepage at http://www.cs.nthu.edu.tw/~jang.
    [27]. http://berkeley.intel-research.net/labdata/.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE