研究生: |
陳柏璋 Chen, Po Chang |
---|---|
論文名稱: |
脈衝式電鍍法製備之新穎奈米結構鉑觸媒應用於高效能質子交換膜燃料電池 Preparation of Pt Nanostructures as High-performance Electrocatalysts for a PEM Fuel Cell by a Pulsed Electrodeposition Technique |
指導教授: |
陳燦耀
Chen, Tsan Yao 葉宗洸 Yeh, Tsung Kuang |
口試委員: |
薛康琳
Hsueh, Kang Lin 蘇育全 Su, Yo Chuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 鉑 、觸媒 、電化學沉積法 、質子交換模燃料電池 、樹枝狀結構 |
外文關鍵詞: | Pt, catalyst, electrodeposition, PEMFC, dendrite |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由脈衝式電化學沉積法在乾淨碳紙上製備新型態鉑觸媒作為質子交換膜燃料電池之觸媒。此新型態鉑觸媒之特殊形貌可增加觸媒反應活性,在不使用其它碳載體的情況下具有較多的觸媒表面積,進而提升觸媒催化效率及電池輸出功率。經由循環伏安法於硫酸及甲醇溶液下進行電化學測試,並利用X光粉末繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)以及電感耦合等離子體質譜(ICP-MS)對試片做進一步的分析。透過掃描式電子顯微鏡照片發現此新型態鉑觸媒的結構為樹枝狀結構,其主幹長度約為數百奈米至3 μm,而寬度約為200至450 nm。半電池電化學測試結果顯示,甲醇測試峰電流值可達585.6 mA/cm2,其if/ib值超過1.4,顯示鉑樹枝狀結構觸媒具有良好的抗一氧化碳毒化能力。使用最佳參數製備出的鉑樹枝狀觸媒再經由氫氣單電池測試,其功率密度可達1140 mW/cm2,顯示鉑樹枝狀觸媒具有高催化性。
Innovative platinum (Pt) nanostructures were developed in this study for enhancing the catalyst activities and the power density of single cell for proton exchange membrane fuel cell (PEMFC) application. The platinum nanostructures were directly grown on carbon paper by a pulsed electrodeposition technique. The morphology of Pt nanostructures were investigated by SEM, and shown as dendritic structures instead of nanoparticles. The sizes of the dendritic structures were a few nanometers to 3 m in length and 200~450 nm in diameter. A cyclic voltammetry analysis was carried out for characterizing the behavior of methanol oxidation on specimen bearing the Pt dendritic nanostructures in a mixed electrolyte of 1 M methanol and 0.5 M sulfuric acid. It was found that the peak current density of methanol oxidation on the new Pt dendritic nanostructures was as high as 586.5 mA/cm2. The Pt dendritic nanostructures could exhibit a good carbon monoxide tolerance and high efficiency without the incorporation of ruthenium (Ru) catalyst. Based upon the single cell tests, the peak specific power density of PEMFC with the homemade dendritic Pt catalyst was 1140 mW/cm2 and greater than one with the commercial catalysts. The outcome signified a nanostructure catalyst morphology and a significantly improved catalytic activity of the anode or cathode prepared by a pulsed electrodeposition technique.
[1] W. R. Grove, "On voltaic series and the combination of gases by platinum", Phil. Mag., vol. 14, pp. 127-130, 1839
[2] J. Larminie and A. Dicks, Fuel cell systems explained, 2nd ed. Chichester, West Sussex: J. Wiley, 2003.
[3] B. Wickman, "Nanostructured Model Electrodes for Studies of Fuel Cell Reactions", Chalmers University of Technology, 2010
[4] L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel Cells - Fundamentals and Applications," Fuel Cells, vol. 1, pp. 5-39, May 2001.
[5] M. S. Wilson, J. A. Valerio, and S. Gottesfeld, "Low Platinum Loading Electrodes for Polymer Electrolyte Fuel-Cells Fabricated Using Thermoplastic Ionomers," Electrochimica Acta, vol. 40, pp. 355-363, Feb 1995.
[6] T. R. Ralph and M. P. Hogarth, "Catalysis for Low Temperature Fuel Cells," Platinum Metals Review, vol. 46, pp. 117-135, Jul 2002.
[7] M. Naraghi, Carbon Nanotubes - Growth and Applications, InTech, 2011
[8] M. C. Tsai, T. K. Yeh, and C. H. Tsai, "An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation," Electrochemistry Communications, vol. 8, pp. 1445-1452, Sep 2006.
[9] M. M. E. Duarte, A. S. Pilla, J. M. Sieben, and C. E. Mayer, "Platinum particles electrodeposition on carbon substrates," Electrochemistry Communications, vol. 8, pp. 159-164, Jan 2006.
[10] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, and Z. L. Wang, "Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity," Science, vol. 316, pp. 732-735, May 4 2007.
[11] Y. N. Xia, Y. J. Xiong, B. Lim, and S. E. Skrabalak, "Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?," Angewandte Chemie-International Edition, vol. 48, pp. 60-103, 2009.
[12] H. T. Tung, J. M. Song, Y. T. Nien, and I. G. Chen, "A novel method for preparing vertically grown single-crystalline gold nanowires," Nanotechnology, vol. 19, Nov 12 2008.
[13] B. Wiley, T. Herricks, Y. G. Sun, and Y. N. Xia, "Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons," Nano Letters, vol. 4, pp. 1733-1739, Sep 2004.
[14] B. J. Wiley, Z. H. Wang, J. Wei, Y. D. Yin, D. H. Cobden, and Y. N. Xia, "Synthesis and electrical characterization of silver nanobeams," Nano Letters, vol. 6, pp. 2273-2278, Oct 11 2006.
[15] Y. J. Xiong, I. Washio, J. Y. Chen, H. G. Cai, Z. Y. Li, and Y. N. Xia, "Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions," Langmuir, vol. 22, pp. 8563-8570, Sep 26 2006.
[16] Y. J. Xiong, H. G. Cai, B. J. Wiley, J. G. Wang, M. J. Kim, and Y. N. Xia, "Synthesis and mechanistic study of palladium nanobars and nanorods," Journal of the American Chemical Society, vol. 129, pp. 3665-3675, Mar 28 2007.
[17] Y. J. Xiong and Y. N. Xia, "Shape-controlled synthesis of metal nanostructures: The case of palladium," Advanced Materials, vol. 19, pp. 3385-3391, Oct 19 2007.
[18] J. Y. Chen, T. Herricks, M. Geissler, and Y. N. Xia, "Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process," Journal of the American Chemical Society, vol. 126, pp. 10854-10855, Sep 8 2004.
[19] J. Y. Chen, T. Herricks, and Y. N. Xia, "Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics," Angewandte Chemie-International Edition, vol. 44, pp. 2589-2592, 2005.
[20] Y. J. Song, Y. Yang, C. J. Medforth, E. Pereira, A. K. Singh, H. F. Xu, et al., "Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures," Journal of the American Chemical Society, vol. 126, pp. 635-645, Jan 21 2004.
[21] 張育鳴,「改善電鍍技術製備以奈米碳管為載體之直接甲醇燃料電池陽極觸媒層」,國立清華大學碩士論文,2007
[22] J. Lee, "Morphological features of electrodeposited Pt nanoparticles and its application as anode catalysts in polymer electrolyte formic acid fuel cells", Journal of Power Sources, vol. 195, pp. 5929–5933, Sep 15 2010.
[23] 莊宸綱,「利用脈衝式電鍍法製備高燃料氧化效能及抗一氧化碳毒化之新穎奈米結構鉑觸媒」,國立清華大學碩士論文,2014
[24] S. Thomas, M. Zalbowitz, and D. Gill, Fuel Cells: Green Power, USA, 2006
[25] J. Y. Sun, J. S. Huang, Y. X. Cao, and X. G. Zhang, "Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol," International Journal of Electrochemical Science, vol. 2, pp. 64-71, Jan 2007.
[26] H. I. Lee, C. H. Lee, T. Y. Oh, S. G. Choi, I. W. Park, and K. K. Baek, "Development of 1 kW class polymer electrolyte membrane fuel cell power generation system," Journal of Power Sources, vol. 107, pp. 110-119, Apr 20 2002.
[27] Florida Solar Energy Center, Procedure for Performing PEM Single Cell Testing, 2009.