簡易檢索 / 詳目顯示

研究生: 陳柏璋
Chen, Po Chang
論文名稱: 脈衝式電鍍法製備之新穎奈米結構鉑觸媒應用於高效能質子交換膜燃料電池
Preparation of Pt Nanostructures as High-performance Electrocatalysts for a PEM Fuel Cell by a Pulsed Electrodeposition Technique
指導教授: 陳燦耀
Chen, Tsan Yao
葉宗洸
Yeh, Tsung Kuang
口試委員: 薛康琳
Hsueh, Kang Lin
蘇育全
Su, Yo Chuan
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 65
中文關鍵詞: 觸媒電化學沉積法質子交換模燃料電池樹枝狀結構
外文關鍵詞: Pt, catalyst, electrodeposition, PEMFC, dendrite
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由脈衝式電化學沉積法在乾淨碳紙上製備新型態鉑觸媒作為質子交換膜燃料電池之觸媒。此新型態鉑觸媒之特殊形貌可增加觸媒反應活性,在不使用其它碳載體的情況下具有較多的觸媒表面積,進而提升觸媒催化效率及電池輸出功率。經由循環伏安法於硫酸及甲醇溶液下進行電化學測試,並利用X光粉末繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)以及電感耦合等離子體質譜(ICP-MS)對試片做進一步的分析。透過掃描式電子顯微鏡照片發現此新型態鉑觸媒的結構為樹枝狀結構,其主幹長度約為數百奈米至3 μm,而寬度約為200至450 nm。半電池電化學測試結果顯示,甲醇測試峰電流值可達585.6 mA/cm2,其if/ib值超過1.4,顯示鉑樹枝狀結構觸媒具有良好的抗一氧化碳毒化能力。使用最佳參數製備出的鉑樹枝狀觸媒再經由氫氣單電池測試,其功率密度可達1140 mW/cm2,顯示鉑樹枝狀觸媒具有高催化性。


    Innovative platinum (Pt) nanostructures were developed in this study for enhancing the catalyst activities and the power density of single cell for proton exchange membrane fuel cell (PEMFC) application. The platinum nanostructures were directly grown on carbon paper by a pulsed electrodeposition technique. The morphology of Pt nanostructures were investigated by SEM, and shown as dendritic structures instead of nanoparticles. The sizes of the dendritic structures were a few nanometers to 3 m in length and 200~450 nm in diameter. A cyclic voltammetry analysis was carried out for characterizing the behavior of methanol oxidation on specimen bearing the Pt dendritic nanostructures in a mixed electrolyte of 1 M methanol and 0.5 M sulfuric acid. It was found that the peak current density of methanol oxidation on the new Pt dendritic nanostructures was as high as 586.5 mA/cm2. The Pt dendritic nanostructures could exhibit a good carbon monoxide tolerance and high efficiency without the incorporation of ruthenium (Ru) catalyst. Based upon the single cell tests, the peak specific power density of PEMFC with the homemade dendritic Pt catalyst was 1140 mW/cm2 and greater than one with the commercial catalysts. The outcome signified a nanostructure catalyst morphology and a significantly improved catalytic activity of the anode or cathode prepared by a pulsed electrodeposition technique.

    總目錄 摘要 i Abstract ii 致謝 iii 總目錄 iv 表目錄 vii 圖目錄 vii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 基本原理與文獻回顧 4 2.1 燃料電池簡介 4 2.2 質子交換膜燃料電池結構 7 2.2.1 氣體擴散層 7 2.2.2 觸媒層 8 2.2.3 質子交換膜 9 2.2.4 雙極板 10 2.3 質子交換膜燃料電池工作原理 11 2.4 全電池極化損失 12 2.4.1 活性極化 13 2.4.2 歐姆極化 14 2.4.3 濃度極化 14 2.4.4 燃料穿透 15 2.5 觸媒製備方法 15 2.5.1 電化學沉積法 15 2.5.2 定電位電鍍法 15 2.5.3 脈衝式(往復式)電鍍法 17 2.5.4 奈米線、奈米柱觸媒製備 19 第三章 實驗方法 25 3.1 實驗流程 25 3.2 實驗藥品與設備 26 3.2.1 實驗藥品 26 3.2.2 實驗用氣體 26 3.2.3 實驗設備 26 3.2.4 分析儀器 27 3.3 電化學實驗裝製設計 28 3.4 碳紙親水化處理 28 3.5 電化學沉積法製備鉑觸媒 29 3.6 觸媒催化性分析 30 3.6.1 電化學分析 30 3.6.2 硫酸測試 (Sulfuric acid test) 31 3.6.3 甲醇測試 (Methanol oxidation test) 33 3.7 觸媒型態分析 34 3.7.1 場發射掃瞄式電子顯微鏡 (Field Emission Gun Scanning Electron Microscopy,FEG-SEM) 34 3.7.2 穿透式電子顯微鏡 (Transmission Electron Microscopy,TEM) 35 3.7.3 X光粉末繞射 (X-ray Powder Diffraction,XPRD) 35 3.7 組成比例分析 36 3.7.1感應耦合電漿質譜分析儀 (Inductively Coupled Plasma-Mass Spectrometer,ICP-MS) 36 3.8 單電池測試 (Single Cell Test) 37 3.8.1 膜電極組(Membrane Electrode Assembly,MEA)製備 37 3.8.2 漿料配製與噴塗 37 3.8.3 MEA壓合 39 3.8.4 單電池極化掃描測試 39 第四章 結果與討論 41 4.1 碳紙親水化處理 41 4.2 場發射掃描式電子顯微鏡之觸媒微影圖像分析(SEM) 42 4.3 穿透式電子顯微鏡之觸媒微影圖像分析(TEM) 45 4.4 X光粉末繞射法分析(XPRD) 45 4.5 半電池電化學分析結果 46 4.5.1 硫酸測試 46 4.5.2 甲醇測試 47 4.6 感應耦合電漿質譜分析儀分析(ICP-MS) 49 4.7 單電池測試分析結果 52 4.7.1 自製觸媒單電池極化掃描測試 52 4.7.2 商用觸媒單電池極化掃描測試 58 第五章 結論 58 參考文獻 63   表目錄 表2. 1 各種燃料電池基本特性比較 6 表2. 2 以電鍍法還原之PtRu/CNTs(B02)與J-M商業觸媒之觸媒活性比較 16 表3. 1 電鍍參數條件表 30 表4. 1 較低濃度前驅物所製備之試片的甲醇測試電化學參數 48 表4. 2 較高濃度前驅物所製備之試片的甲醇測試電化學參數 50 表4. 3 自製試片之觸媒承載量與甲醇測試之電化學結果 51 表4. 4 試片在70℃之陰、陽極氣體不同進料流量的參數與單電池極化掃描結果比照 53 表4. 5 試片在80℃之陰、陽極氣體不同進料流量的參數與單電池極化掃描結果比照 54 表4. 6 進料流速300 sccm不同進料溫度之參數與單電池極化掃描結果比照 56 表4. 7 進料流速400 sccm不同進料溫度之參數與單電池極化掃描結果比照 57 表4. 8 商用白金觸媒為1 mg/cm2之單電池極化掃描參數與結果比照 58 表4. 9 商用白金觸媒為2 mg/cm2之單電池極化掃描參數與結果比照 59 表4. 10 商用白金觸媒為3 mg/cm2之單電池極化掃描參數與結果比照 60 表4. 9 不同承載量的商用白金觸媒之單電池極化掃描結果彙整比照 61 圖目錄 圖2. 1 William Grove實驗示意圖(a)為電解水實驗(b)將外加電壓換成安培計,可讀取微量電流 4 圖2. 2 質子交換膜燃料電池結構圖 7 圖2. 3 甲醇氧化成二氧化碳過程中可能產生之中間產物 9 圖2. 4 Nafion化學通式 10 圖2. 5質子交換膜燃料電池工作原理 12 圖2. 6典型低溫燃料電池極化曲線示意圖 13 圖2. 7 快、慢電化學反應之塔佛曲線 14 圖2. 8 以電鍍法還原之PtRu/CNTs(B02)之TEM照片 16 圖2. 9 以電鍍法還原之PtRu/CNTs(B02)與商業觸媒J-M在0.5M H2SO4 + 1M CH3OH溶液及飽和氮氣下之甲醇氧化電流CV曲線圖的比較 16 圖2. 10 脈衝式電位示意圖 17 圖2. 11 (a)Pt/GC的顆粒大小分佈 (b)Pt/GF之SEM照片 18 圖2. 12 電鍍5分鐘製程所得之觸媒其粒徑分佈與SEM照片 19 圖2. 13高指數面金字塔型奈米白金觸媒觸媒其粒徑分佈與SEM照片 19 圖2. 14 奈米銀線之(a),(c) SEM照片(b) TEM照片(d) TEM截面圖 20 圖2. 15 (A) 0%; (B) 9.1%; (C) 45.5%; (D) 72.7%體積濃度之乙二醇在100℃還原出的鈀奈米結構之TEM照片 21 圖2. 16 利用多元醇還原法製備單晶Pt奈米線之流程圖 22 圖2. 17 利用多元醇還原法所製備之Pt奈米線之TEM微影圖 22 圖2. 18 在10 mM 的六氯鉑酸和0.5 M的過氯酸溶液中掃描的(a) 線性掃描伏安法(LSV), (b)電流對時間的數據圖表 23 圖2. 19 藉由控制電沉積電位(a) -0.2 V, (b) -0.1 V, (c) 0 V, (d) 0.1 V, (e) 0.2 V, (f) 0.3 V所製備出不同形貌之鉑觸媒SEM照片 24 圖3. 1 實驗流程圖 25 圖3. 2 三極式電化學系統示意圖 28 圖3. 3 循環伏安法之電位-時間示意圖 31 圖3. 4 典型可逆氧化還原反應之循環伏安曲線 31 圖3. 5 Pt/C於0.5 M H2SO4溶液之循環伏安曲線 33 圖3. 6 甲醇測試之循環伏安曲線 34 圖3. 7 X光粉末繞射,布拉格方程式之幾何關係 36 圖3. 8 典型ICP-MS儀器構造圖 37 圖3. 9 單電池組裝示意圖 39 圖3. 10 燃料電池測試系統示意圖 40 圖4.1 親水化處理CV曲線圖 41 圖4. 2 脈衝式電鍍法於不同濃度下所製備觸媒之5,000倍率SEM照片 42 圖4. 3 脈衝式電鍍法於不同濃度下所製備觸媒之10,000倍率SEM照片 43 圖4. 4 脈衝式電鍍法於不同濃度下所製備觸媒之20,000倍率SEM照片 44 圖4. 5 運用脈衝式電鍍法製備觸媒之TEM照片 45 圖4. 6 白金樹枝狀觸媒之X光粉末繞射分析圖 46 圖4. 7 脈衝式電鍍法所製備觸媒之CV圖。試片於30℃、0.5 M H2SO4以20 mV/s掃描速率下測試,並以掃描第五圈表示 47 圖4. 8 雙電位脈衝電鍍圈數與甲醇氧化電流密度之作圖 49 圖4. 9 雙電位脈衝電鍍累積電流量與甲醇氧化電流密度之作圖 49 圖4. 10 脈衝式電鍍法所製備觸媒之甲醇測試CV圖。試片於30℃、0.5 M H2SO4+1 M CH3OH以20 mV/s掃描速率下測試,並以掃描第五圈表示 51 圖4. 11 單電池測試溫度在70℃下,陰、陽極不同進料流速之極化曲線圖 53 圖4. 12 單電池測試溫度在80℃下,陰、陽極不同進料流速之極化曲線圖 54 圖4. 13 單電池進料流量在300sccm下,不同進料溫度之單電池極化曲線圖 56 圖4. 14 單電池進料流量在400sccm下,不同進料溫度之單電池極化曲線圖 57 圖4. 15 商用白金觸媒為1 mg/cm2之單電池極化曲線圖 58 圖4. 16 商用白金觸媒為2 mg/cm2之單電池極化曲線圖 59 圖4. 17 商用白金觸媒為3 mg/cm2之單電池極化曲線圖 60 圖4. 18 不同承載量的商用白金觸媒之單電池極化曲線圖彙整 61

    [1] W. R. Grove, "On voltaic series and the combination of gases by platinum", Phil. Mag., vol. 14, pp. 127-130, 1839
    [2] J. Larminie and A. Dicks, Fuel cell systems explained, 2nd ed. Chichester, West Sussex: J. Wiley, 2003.
    [3] B. Wickman, "Nanostructured Model Electrodes for Studies of Fuel Cell Reactions", Chalmers University of Technology, 2010
    [4] L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel Cells - Fundamentals and Applications," Fuel Cells, vol. 1, pp. 5-39, May 2001.
    [5] M. S. Wilson, J. A. Valerio, and S. Gottesfeld, "Low Platinum Loading Electrodes for Polymer Electrolyte Fuel-Cells Fabricated Using Thermoplastic Ionomers," Electrochimica Acta, vol. 40, pp. 355-363, Feb 1995.
    [6] T. R. Ralph and M. P. Hogarth, "Catalysis for Low Temperature Fuel Cells," Platinum Metals Review, vol. 46, pp. 117-135, Jul 2002.
    [7] M. Naraghi, Carbon Nanotubes - Growth and Applications, InTech, 2011
    [8] M. C. Tsai, T. K. Yeh, and C. H. Tsai, "An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation," Electrochemistry Communications, vol. 8, pp. 1445-1452, Sep 2006.
    [9] M. M. E. Duarte, A. S. Pilla, J. M. Sieben, and C. E. Mayer, "Platinum particles electrodeposition on carbon substrates," Electrochemistry Communications, vol. 8, pp. 159-164, Jan 2006.
    [10] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, and Z. L. Wang, "Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity," Science, vol. 316, pp. 732-735, May 4 2007.
    [11] Y. N. Xia, Y. J. Xiong, B. Lim, and S. E. Skrabalak, "Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?," Angewandte Chemie-International Edition, vol. 48, pp. 60-103, 2009.
    [12] H. T. Tung, J. M. Song, Y. T. Nien, and I. G. Chen, "A novel method for preparing vertically grown single-crystalline gold nanowires," Nanotechnology, vol. 19, Nov 12 2008.
    [13] B. Wiley, T. Herricks, Y. G. Sun, and Y. N. Xia, "Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons," Nano Letters, vol. 4, pp. 1733-1739, Sep 2004.
    [14] B. J. Wiley, Z. H. Wang, J. Wei, Y. D. Yin, D. H. Cobden, and Y. N. Xia, "Synthesis and electrical characterization of silver nanobeams," Nano Letters, vol. 6, pp. 2273-2278, Oct 11 2006.
    [15] Y. J. Xiong, I. Washio, J. Y. Chen, H. G. Cai, Z. Y. Li, and Y. N. Xia, "Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions," Langmuir, vol. 22, pp. 8563-8570, Sep 26 2006.
    [16] Y. J. Xiong, H. G. Cai, B. J. Wiley, J. G. Wang, M. J. Kim, and Y. N. Xia, "Synthesis and mechanistic study of palladium nanobars and nanorods," Journal of the American Chemical Society, vol. 129, pp. 3665-3675, Mar 28 2007.
    [17] Y. J. Xiong and Y. N. Xia, "Shape-controlled synthesis of metal nanostructures: The case of palladium," Advanced Materials, vol. 19, pp. 3385-3391, Oct 19 2007.
    [18] J. Y. Chen, T. Herricks, M. Geissler, and Y. N. Xia, "Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process," Journal of the American Chemical Society, vol. 126, pp. 10854-10855, Sep 8 2004.
    [19] J. Y. Chen, T. Herricks, and Y. N. Xia, "Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics," Angewandte Chemie-International Edition, vol. 44, pp. 2589-2592, 2005.
    [20] Y. J. Song, Y. Yang, C. J. Medforth, E. Pereira, A. K. Singh, H. F. Xu, et al., "Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures," Journal of the American Chemical Society, vol. 126, pp. 635-645, Jan 21 2004.
    [21] 張育鳴,「改善電鍍技術製備以奈米碳管為載體之直接甲醇燃料電池陽極觸媒層」,國立清華大學碩士論文,2007
    [22] J. Lee, "Morphological features of electrodeposited Pt nanoparticles and its application as anode catalysts in polymer electrolyte formic acid fuel cells", Journal of Power Sources, vol. 195, pp. 5929–5933, Sep 15 2010.
    [23] 莊宸綱,「利用脈衝式電鍍法製備高燃料氧化效能及抗一氧化碳毒化之新穎奈米結構鉑觸媒」,國立清華大學碩士論文,2014
    [24] S. Thomas, M. Zalbowitz, and D. Gill, Fuel Cells: Green Power, USA, 2006
    [25] J. Y. Sun, J. S. Huang, Y. X. Cao, and X. G. Zhang, "Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol," International Journal of Electrochemical Science, vol. 2, pp. 64-71, Jan 2007.
    [26] H. I. Lee, C. H. Lee, T. Y. Oh, S. G. Choi, I. W. Park, and K. K. Baek, "Development of 1 kW class polymer electrolyte membrane fuel cell power generation system," Journal of Power Sources, vol. 107, pp. 110-119, Apr 20 2002.
    [27] Florida Solar Energy Center, Procedure for Performing PEM Single Cell Testing, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE