研究生: |
翁浚源 Ong, Chun-Yung |
---|---|
論文名稱: |
光學正交分頻多工實驗系統 Optical OFDM Experimental System |
指導教授: |
馮開明
Feng, Kai-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | OFDM |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球通訊以及網際網路發達的現在,人們所追求的是更高的傳輸速度與品質,而光纖通訊因具備高頻寬、低損失及傳輸時不受電磁波的影響等優點,再加上光放大器和光調變器發展,光通訊系統技術也隨之快速的進步。光纖通訊的應用範圍相當廣泛,大致上可分為幾個重要領域,分別為電信網路 (Telecom)、數據網路 (Datacom)、有線電視 (CATV)光纖傳輸網路….等等。
相較於傳統的光通訊系統,光學正交分頻多工系統 (optical OFDM system)最大的優勢在於可以在DSP (digital signal process)處理大部分光上面的問題,比如說光訊號傳輸受到色散 (chromatic dispersion)的影響而造成phase delay,可在傳輸端複製一部份的OFDM訊號當作guard interval,避掉訊號之間的影響(intersymbol interference)以及接收時的訊號損失,然而,傳統的光通訊系統需要使用色散補償光纖。以及OFDM的正交特性可以提升頻譜效應,相較於傳統的光通訊系統,越高的傳輸速率就需要更大的頻寬,OFDM可以節省約兩倍的頻寬並且維持高速的位元傳輸速率。
本篇論文主要就是架設出光學正交分頻多工系統的實驗,在接收端使用direct-detection接收,系統複雜度較簡單但是在傳輸端必須傳送一根載波伴隨著OFDM訊號,所以在傳輸端的IFFT內subcarrier作適當的安排[1],除了傳輸時可以帶一根載波並且訊號可以偏壓在光調變器的線性區,接收時也可以避掉signal-signal beating interference (SSBI)[2],並且將此系統作CSPR (carrier signal power ratio)的最佳化。就目前direct-detection光學正交分頻多工系統的研究領域中,A. J. Lowery由20 Gb/s的位元傳輸速率[3]到使用self-coherent以及PDM (polarization division multiplexing)的方式大幅提升位元傳輸速率達120 Gb/s [4]。
[1] Wei-Ren Peng, “Theoretical and Experimental Investigations of Direct-Detected RF-Tone-Assisted Optical OFDM Systems,” Journal of Lightwave Technology, Vol. 27, NO. 10, MAY 15, 2009
[2] A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Optics Express 860, Vol. 16, NO. 2, January 21, 2008
[3] A. J. Lowery, “Experimental Demonstrations of 20 Gbit/s Direct-Detection Optical OFDM and 12 Gbit/s with a colorless transmitter,” Optical Fiber Communication Conference (OFC), March 25, 2007
[4] A. J. Lowery, “120 Gbit/s Over 500-km Using Single-Band Polarization-Multiplexed Self-Coherent Optical OFDM,” Journal of Lightwave Technology, Vol. 28, NO. 4, February 15, 2010
[5] R. W. Chang. Synthesis of band-limited orthogonal signals for multi-channel data transmission【J】.Bell syst.Tech. J.,Dec. 1966,45:1775 – 1796
[6] R. W. Chang. A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme【J】.IEEE Trans. Commun.,1968,C-16:529-540
[7] S. B. Weinstein and P. M. Ebert. Data transmission by frequency division multiplexing using the discrete Fourier transform【J】.IEEE Trans. Commun. Technol.,Oct. 1971,vol. COM- 19:628 – 634
[8] A. J. Lowery and Jean Armstrong, "Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems," Opt. Express 14, 2079-2084 (2006)
[9] A. J. Lowery and J. Armstrong, “Adapation of Orthogonal Frequency Division Multiplexing to Compensate Impairments in Optical Transmission Systems”, ECOC Tutorial: Berlin 2007
[10] A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of Optical OFDM in Ultralong-Haul WDM Lightwave Systems”, Journal of Lightwave Technology, vol 25, NO. 1, January 2007
[11] J. W. Cooley and J. W. Tuke, “An Algorithm for Machine Computation of Complex Fourier Series,” Math. Computation, Vol. 19, pp. 297-301, April 1965
[12] W. Shieh and C.Athaudage,“Coherent Optical Orthogonal Frequency Division Multiplexing,”IEE Electron. Lett., vol. 42, No. 10, May, 2006
[13] M. Sieben, J. Conradi, and D. E. Dodds,”Optical Single Sideband Transmission at 10Gb/s Using Only Electrical Dispersion Compensation”, Journal of Lightwave Technology, vol 17, NO.10, October 1999
[14] R. I. Killey, P. M. Watts, V. Mikhailov, M. Glich, and P. Bayvel,”Electronic Dispersion Compensation by Signal Predistortion Using Digital Processing and a Dual-Drive Mach-Zehnder Modulator”, IEEE Photonic technology Letters, vol 17, NO. 3, March 2005
[15] Chun-Ting Lin, “Optical Millimeter-Wave Up-Conversion Employing Frequency Quadrupling Without Optical Filtering,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 8, AUGUST 2009