簡易檢索 / 詳目顯示

研究生: 曾士豪
論文名稱: 單壁奈米碳管量產及其光聲響性質之研究
Large-scale Production and Photoacoustic Effect of Single Wall Carbon Nanotubes
指導教授: 戴念華
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 194
中文關鍵詞: 單壁奈米碳管懸浮觸媒法光聲響垂直爐管燃燒聲波氧化奈米碳球二茂鐵
外文關鍵詞: single wall carbon nanotube, floating catalyst method, photoacoustic, vertical furnace, ignition, acoustic wave, oxidation, carbon nanocapsule, ferrocene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以水平式懸浮觸媒法製備高純度單壁奈米碳管絨球,研究單壁奈米碳管絨球經照光產生氧化以及光聲響的效應。本實驗發現所生產之單壁奈米碳管絨球照光會產生聲波並伴隨碳氧化反應與Fe2SiO4顆粒狀產物的出現,改變照光氣氛 (包含真空與惰性氣氛下)可進一步確認此產物的出現是由於氧化所造成。本實驗同時也利用二茂鐵去推論絨球照光後的表面溫度,並發現Fe2SiO4出現與否與催化劑的存在具有相當大的關聯,而出現燃燒或是氧化結果主要是因為催化劑含量的多寡所致,這可以奈米碳球照光的結果做進一步的驗證。同時在光聲響頻譜量測方面也發現單壁奈米碳管的聲波強度遠大於相關的碳材料,可高達0.0045 pa,藉此也推測出聲波的出現與結構的變化乃是由於光聲響機制所造成。
    另一方面,本實驗進一步以自組裝垂直式爐管量產單壁奈米碳管,實驗結果證實產量可達到200 mg/10 min以上,並可發現單壁奈米碳管確實可纏繞於收集器的旋轉軸上,此一維束狀結構未來可應用於複合材料以及相關強化材。


    The high purity fluffy SWNT ball was synthesized through the floating catalyst method in a horizontal tube furnace. Ignition and photoacoustic effects of SWNT ball due to flash exposure were investigated. Acoustic wave accompanied with formation of Fe2SiO4 particles was detected. This phenomenon can be further verified as rapid expansion of surrounding air and carbon oxidation. Ferrocene on fluffy SWNT ignited after flashing, which indicates that the surface temperature of carbon nanotubes after flashing exceeds burning temperature of ferrocene. It also found that the appearance of Fe2SiO4 was related to the existence of iron catalyst. Depending on the catalyst amount in SWNTs, the fluffy ball may ignite or oxidize, according to the response of carbon nanocapsules after flash exposure. The acoustic intensity of fluffy SWNT ball is stronger than that of other carbon materials such as MWNT, carbon fiber, carbon powders etc. Based on the results, it is concluded that the structure transformation of fluffy ball is due to the photoacoustic effect.
    Moreover, this work established a vertical tube furnace to synthesize the SWNTs with large scale production rate, and a production rate high up to 200 mg/10 min can be achieved. This one dimension SWNT rope can be applied to composite and reinforced materials in the future.

    中文摘要..................................................Ⅰ 英文摘要..................................................Ⅱ 致謝......................................................Ⅲ 總目錄....................................................Ⅳ 圖表目錄..................................................Ⅸ 第一章 緒論...............................................1 1.1簡介................................................1 1.2奈米碳管結構與性質..................................1 1.3奈米碳管製程........................................3 1.3.1 電弧放電法 (arc-discharge)....................3 1.3.2 雷射蒸發法(laser ablation)..................4 1.3.3 化學氣相沉積法(chemical vapor deposition).....4 1.3.4 研究目的與動機................................5 第二章 文獻回顧..........................................12 2.1高溫裂解碳氫化合物製備奈米碳管.....................12 2.1.1多孔隙矽基板成長奈米碳管......................12 2.1.2化學氣相沉積懸浮觸媒法........................12 2.1.3熱燈絲化學氣相沈積法(HFCVD)...................14 2.1.4量產及收集單壁奈米碳管........................14 2.2 光聲響效應 (photoacoustic effect).................15 2.3 單壁奈米碳管光聲響及燃燒..........................19 2.3.1 單壁奈米碳管燃燒的發現.......................19 2.3.2 單壁奈米碳管的來源...........................22 2.4 奈米碳球製造方法..................................23 第三章 研究方法與實驗步驟................................39 3.1 研究方法..........................................39 3.2 實驗方法及步驟....................................39 3.2.1 水平式懸浮觸媒法成長單壁、雙壁、多壁奈米碳管及奈碳球.....................................................39 3.2.2 光聲響實驗...................................42 3.2.3 閃光實驗.....................................43 3.2.3.1空氣下閃光.................... ........43 3.2.3.2 真空下閃光............................44 3.2.3.3 惰性氣體下閃光........................44 3.3 單壁奈米碳管純化..................................44 3.4 半連續式奈米碳管收集量產..........................45 3.5 使用及分析儀器....................................48 3.5.1 水平式CVD....................................48 3.5.2 垂直式CVD....................................49 3.5.3閃光燈........................................51 3.5.4 掃瞄穿遂式電子顯微鏡.........................51 3.5.5 穿透式電子顯微鏡.............................52 3.5.6 拉曼光譜儀...................................52 3.5.7 X光繞射儀...................................54 第四章 結果與討論........................................55 4.1水平式懸浮觸媒法成長單壁、多壁奈米碳管與奈米碳球...55 4.1.1 單壁奈米碳管的製備...........................55 4.1.2 奈米碳球的製備...............................58 4.1.3 多壁奈米碳管製備.............................58 4.2 閃光燈照光........................................59 4.2.1 奈米碳管照光.................................60 4.2.2 奈米碳管絨球照光氧化.........................60 4.2.3 單壁奈米碳管絨球巨觀結構變化.................61 4.2.4 單壁奈米碳管絨球微觀結構變化.................63 4.2.5 單壁奈米碳管與多壁奈米碳管薄膜微觀結變化.....65 4.2.6 奈米碳管照光後產物的鑑定.....................65 4.2.6.1 SEM及EDS分析..........................65 4.2.6.2 TEM及EDS分析..........................68 4.2.6.3 Xray分析..............................70 4.2.6.4 Raman光譜分析.........................70 4.2.7 純化後單壁奈米碳管照光.......................71 4.2.8 真空氣氛下照光...............................72 4.2.9 Ar氣氛下照光.................................73 4.2.10 單壁奈米碳管絨球加上二茂鐵照光..............74 4.2.11 奈米碳球照光................................76 4.2.12 奈米碳球照光後產物結構分析..................77 4.2.12.1 SEM及EDS分析.........................77 4.2.12.2 TEM分析..............................78 4.2.12.3 X-ray分析............................79 4.3 單壁奈米碳管氧化熱處理............................80 第五章 光聲響量測及機制.................................155 5.1 光聲響量測.......................................155 5.2 空白實驗.........................................155 5.3 單壁奈米碳管光聲響量測...........................156 5.4 相關碳材料光聲響量測.............................157 5.5 光聲響機制.......................................158 第六章 垂直爐管式量產單壁奈米碳管.......................176 第七章 結論.............................................188 第八章 參考文獻.........................................191

    1.Kroto HW, Heath JR, Brien SCO, et al. Nature. 1990, 347: 354
    2.Iijima S. Nature. 1991, 354: 56
    3.Rice University: Rick Smalley’s Group Home Page Image Gallery
    4.Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes & Carbon Nanotubes. San Diego: Academic Press, 1996
    5.M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Physics of carbon nanotubes, Carbon, 33, 883 (1995)
    6.Hanada N, Sawada SI, Oshiyama A. Phys Rev Lett. 1992, 68: 1579
    7.Mintmire JW, Dunlap BI, White CT. Phys Rev Lett. 1992, 68: 631
    8.Saito R, Fujita M, Dresselhaus G. Physical Properties of Carbon Nanotubes. Imperial College, 1998
    9.Yahachi Saito, Sashiro Uemura, Field emission from carbon nanotubes and its application to electron sources, Carbon, 38, 169 (2000)
    10.Ijima S, Ichihashi T. Nature. 1993, 363: 603
    11.Masako Yudasaka, Toshinari Ichihashi, Toshiki Komatsu, Sumio Iijima, Single-wall carbon nanotubes formed by a single laser-beam pulse. Chemical Physical Letters, 299, (1999), 91~96
    12.W. K. Master, E. Munoz, M.T. Martinez, A.M. Benito, G.F. de la Fuente, Study of parameters important for the growth of single wall carbon nanotubes. Optical Materials 17 (2001) 331~334
    13.Lijie Ci, Jinquan Wei, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon 39 (2001) 329~335
    14.Pavel Nikolaev, Michael J. Bronikowski, R. Kelley Bradley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physical Letters 313 (1999) 91~97
    15.Shoushan Fan, Michael G. Chapline, Nathan R. Franklin, Thomas W. Tombler, Alan M. Cassell, Hongjie Dai, Self-oriented regular arrays of carbon nanotubes and their emission properties. Science 283 (1999) 512~514
    16.H. M. Cheng, F. Li and G. Su, H. Y. Pan and L. L. He, X. Sun and M. S. Dresselhaus, Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic prolysis of hydrocarbons, Applied Physics Letters 72 (1998) 3282~3284
    17.J. –F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Konya, A. Fonseca, Ch. Laurent, J. B. Nagy, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chemical Physics Letters 317 (2000) 83~89
    18.Lijie Ci, Jinquan Wei, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon 39 (2001) 329~335
    19.Lijie Ci, Sishen Xie, Dongsheng Tang, Xiaoqin Yan, Yubao Li, Zuqin Liu, Xiaoping Zou, Weiya Zhou, Gang Wang, Controllable growth of single wall carbon nanotubes by pyrolizing acetylene on the floating iron catalysts. Chemical Physics Letters 349 (2001) 191~195
    20.Lijie Ci, Zhilong Rao, Zhenping Zhou, Dongsheng Tang, Xiaoqin Yan, Yingxin Liang, Dongfang Liu, Huajun Yuan, Weiya Zhou, Gang Wang, Wei Liu, Sishen Xie, Double wall carbon nanotubes promoted by sulfur in a floating catalyst CVD system. Chemical Physics Letters 359 (2002) 63~67
    21.Toshiya Okazaki, Hisanori Shinohara, Synthesis and characterization of single-wall carbon nanotubes by hot-filament assisted chemical vapor deposition. Chemical Physics Letters 376 (2003) 606~611
    22.Shigeo Maruyama, Ryosuke Kojima, Yuhei Miyauchi, Shohei Chiashi, Masamichi Kohno, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chemical Physics Letters 360 (2002) 229~234
    23.Lijie Ci, Yanhui Li, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu, Preparation of carbon nanofibers by the floating catalyst method. Carbon 38 (2000) 1933~1937
    24.Ya-Li Li, lan A. Kinloch, Alan H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304 (2004) 276~278
    25.Lars M. Erison, Hua fan, Haiqing Peng, Virginia A. Davis, Wei Zhou, Joseph Sulpizio, Yuhuang Wang, Richard Booker, Macroscopic, Nest, Single-walled carbon nanotube fibers. Science 305 (2004) 1447~1450
    26.David J. Waller and Robert C. Brown, Photoacoustic response of unburnt carbon in fly ash to infrared radiation. Fuel 75 (1996) 1568~1574
    27.Maohong Fan, Robert C. Brown, Precision and accuracy of photoacoustic measurements of unburned carbon in fly ash. Fuel 80 (2001) 1545~1554
    28.Allan Rosencwaig and Allen Gersho, Theroy of the photoacoustic effect with solids. Journal of Applied Physics 47 (1976) 64~69
    29.F. Alan McDonald and Grover C. Wetsel, Jr. Generalized theory of the photoacoustic effect. J. Appl. Phys. 49 (1978) 2313~2322
    30.Stephen J. McGovern, Barrie S. H. Royce, and Jay B. Benziger, The importance of interstitial gas expansion in infrared photoacoustic spectroscopy of powders. J. Appl. Phys. 57 (1985) 1710~1718
    31.P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, T. W. Ebbesen, Nanotubes in a flash-ignitin and restruction. science 296 (2002) 705
    32.J. Hone, M. Whitney, A. Zettl, Thermal conductivity of single-walled carbon nanotubes, synthetic metals 103 (1999) 2489~2499
    33.Pavel Nikolaev, Andreas Thess, Andrew G. Rinzler, Daniel T. Colbert, Richard E. Smalley, Diameter doubling of single-wall nanotubes. Chemical Physics Letters 266 (1997) 422~426
    34.Bradley Bockroth, J. Karl Johnson, David S. Sholl, Bret Howard, Christopher, Matraopher Matranga, Wei shi, Daniel Sorescu, Ignition nanotubes with a flash. Science 297 (2002) 192~193
    35.Nadi Braidy, Gianluigi A, Botton, Alex Adronov, Oxidation of Fe nanoparticles embedded in single-walled carbon nanotubes by exposure to a bright flash of white light. NanoLetters 2 (2002) 1277~1280
    36.Jan Smits, Buzz Wincheski, Min Namkung, Roy Crooks, Richard Louie, Response of Fe powder, purified and as-produced HiPco single-walled carbon nanotubes to flash exposure. Materials science and Engineering A358 (2003) 384~389
    37.Pavel Nikolaev, Michael J. Bronikowski, R. Kelley Bradley, Frank Rohmund, Daniel T. Colbert, K. A. Smith, Richard E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters 313 (1999) 91~97
    38.K. Bladh, L. K. L. Falk, F. Rohmund, On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Applied Physics A 70 (2000) 317~322
    39.M. Yudasaka, H. Kataura, T. Ichihashi, L. C. Qin, S. Kar, S. Iijima, Diameter enlargement of HiPco single-wall carbon nanotubes by heat treatment. Nano Letters 1 (2001) 487~489
    40.A. A. Setlur, J. Y. Dai, J. M. Laueraas, R. P. H. Chang, Formation of filled carbon nanotubes and nanoparticles using polycyclic aromatic hydrocarbon molecules. Carbon 36 (1998) 721~723
    41.Satoshi Tomita, Masahiro Hikita, Minoru Fujii, Shinji Hayashi, Keiichi Yamamoto, A new and simple method for thin graphitic coating of magnetic-metal nanoparticles. Chemical Physics Letters 316 (2000) 361~364
    42.Hisato Tokoro, Shigeo Fujii, Takeo Oku, Iron nanoparticles coated with graphite nanolayers and carbon nanotubes. Diamond and related materials 13 (2004) 1270~1273
    43.M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, R. Saito, Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40 (2002) 2043~2061
    44.M. Grujicic, G. Cao, A. M. Rao, T. M. Tritt, S. Nayak, UV-light enhanced oxidation of carbon nanotubes. Applied Surface Science 214 (2003) 289~303
    45.P. Giannozzi, R. Car, G. Scoles, Oxygen adsorption on graphite and nanotubes. Journal of Chemical Physics 118 (2003) 1003~1006
    46.Noriaki Sano, Hiroshi Akazawa, Takeyuki Kikuchi, Tatsuo Kanki, Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen. Carbon 41 (2003) 2159~2179

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE