研究生: |
陳弘凱 Hung-Kai Chen |
---|---|
論文名稱: |
以RF磁控濺鍍法鍍製多元合金軟磁薄膜及其磁性質與高頻特性分析 Magnetic Properties and High Frequency Application of the Multi-component Soft Magnetic Thin Film Fabricated by RF Magnetron Sputtering |
指導教授: |
李四海
Shih-Hai Li 杜正恭 Jenq-Gong Duh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 92 |
中文關鍵詞: | 多元合金 、高頻 、軟磁 、導磁率 、rf 磁控濺鍍 |
外文關鍵詞: | Multi-component alloy, High frequency, soft magnetic, permeability, rf sputtering |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於各類無線通訊之軟硬體技術的突飛猛進,逐步往語音、數據與多媒體服務並重的第三代(3G)無線通訊發展。由於需要大量且高速的信號傳輸,使相關技術持續往更高傳輸速率與更高頻譜使用效率方向發展。因此,相關的電子元件便需做適當的製程改善,往小型化、低消耗功率、高整合度、高頻段操作性及雙頻或多頻的方向發展。鐵磁薄膜的應用便是一個很好的例子。在原先的既有被動元件-電感中,如果以鐵磁薄膜,取代原先由陶鐵磁材料所燒結而成的元件,將會明顯的提升其高頻的應用性。
本實驗選用成分為Fe40Co35Ni5Al5Cr5Si10的多元合金作為研究的鐵磁薄膜材料。利用真空合金熔煉方式,可以成功地製作出多元合金薄膜製程用之靶材。再進一步利用RF-磁控濺鍍系統,對一多元之合金靶材作濺鍍,並且配合通入不同的N2與Ar比例,可以成功的得到含有氮成分的合金薄膜。藉著XRD與TEM的分析,可以發現隨著氮含量的不同,薄膜分別會具有奈米晶相或者是非晶相的微結構。
另外,利用振動樣品磁力計(VSM)以及磁光柯爾效應(MOKE)以及配合磁退火的處理,對所得到的合金薄膜作磁性質的分析,可以發現,不同的氮氣氣體比例所鍍製的薄膜,會有不同的磁性質表現。其飽和磁化量(Ms)與異相性場強度(Hk)的變化量分別為,12.7 kG到 16.9 kG以及22 Oe到55 Oe。再更進一步做高頻性質的量測時,可以得到,當通入氮氣與氬氣的氣體比例為0.4%時,鐵磁薄膜具有最高的共振頻率∼2.5 GHz。
因此,利用添加氮原子進入原先的多元合金材料系統,並且配合適當的磁退火處理下,可以成功的改善合金磁性質表現,並且顯著的提升其在高頻的應用的範圍。
Soft magnetic properties with suitable uniaxial anisotropy and high saturation magnetization are required for the high frequency application. In this study, multicomponent Fe-Co-Ni-based soft magnetic thin films were deposited on the Si substrate by RF magnetron sputtering at room temperature. Various nitrogen contents were added during sputtering by adjusting the N2 gas flow. The composition, crystal structure and magnetic domain were analyzed by using electron probe microanalyzer (EPMA), X-ray diffraction (XRD) and magnetic force microscope (MFM), respectively. Without nitrogen doping, the domain of the magnetic thin film was arranged randomly with the thickness around 1μm. The effect of N2 content in the thin film on the magnetic properties was evaluated and further discussed.
Magnetic properties, including saturation magnetization (Ms), coercivity (Hc) and anisotropy field (Hk), were evaluated with a vibrating sample magnetometer (VSM) and Magneto-Optics Kerr Effect (MOKE). For the as-deposited magnetic thin films, no anisotropy magnetization was observed. However, a distinct uniaxial anisotropy occurred after annealed at 300 °C for 1 hr under 1200 Oe external in-plane magnetic field when the nitrogen was added. The saturation magnetization (Ms) of the as-deposited magnetic thin films without nitrogen doping was about 17 kG, and no anisotropy was revealed after field annealing. In contrast, when the nitrogen was added, the anisotropy field (Hk) increased to 30 Oe, while Ms slightly decreased to 13 kG.
The high frequency behavior of Fe-Co-Ni-based magnetic thin films was also evaluated. For the ferro-magnetic resonance frequency (fFMR) correlated to the product of Ms and Hk, a value as high as 2.5 GHz was derived for the annealed N2-doped magnetic thin film.
1. S. Chikazumi, Physics of Magnetism, (1964), 329
2. D.B. Chrisey, P.C. Dorsey, J.D. Adams, H. Buhay, in: M.H. Francombe (Ed.), Handbook of Thin Film Devices, Vol. 4, (2000), 143
3. I. Fergen, K. Seemann, A. v. d. Weth, and A. Schppüen, J. Magn. Magn. Mater., 242, (2002), 146
4. K. Seemann, H. Leiste, and V. Bekker, J. Magn. Magn. Mater., 283, (2004), 310
5. Gotthard Rieger, Guenther Rupp, Guenther Gieres, Reihard Losehand, Wolfgang Hartung, Wolfram Maass, and Wolfgang Ocker, J. Appl. Phys., 91, (2002), 8447
6. M. Yamaguchi, Y. Miyazawa, K. Kaminish, H. Kikuchi, S. Yabukami, K. I. Arai, and T. Suzaki, J. Magn. Magn. Mater., 268, (2004), 170
7. V. Korenivski, and R. B. van Dover, IEEE Trans. Magn., 34, (1998), 1375
8. V. Korenivski, J. Magn. Magn. Mater., 215-216, (2000), 800
9. N. X. Sun, and S. X. Wang, J. Appl. Phys., 92, (2002), 1477
10. A. R. Chezan, C. B. Craus, N. G. Chechenin, L. Niesen, and D. O. Boerma, Phys. Stat. Sol. (a), 189, (2002), 833
11. T. J. Klemmer, K. A. Ellis, L. H. Chen, B. van Dover, and S. Jin, J. Appl. Phys., 87, (2000), 830
12. C. H. Lee, D. H. Shin, D. H. Ahn, S. E. Nam, and H. J. Kim, J. Appl. Phys., 85, (1999), 4898
13. L. H. Chen, H. K. Chen, C. T. Hsieh, Y. H. Shih, I. G. Chen, S. Y. Chen, and H. P. Liu, J. Appl. Phys., 91, (2002), 8450
14. X. L. Tang, H. W. Zhang, H. Su., and X. D. Jiang, J. Magn. Magn. Mater., 270, (2004), 84
15. L. Landau, and E. Lifshitz, Phys. Z. Sowjetunion 8, (1935), 8
16. W. P. Jayasekara, J. A. Bain, and M. H. Kryder, IEEE, 34, (1998),1438
17. 黃國雄,“等莫耳比多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 1996.
18. H. K. Chen, S. H. Li, J. G. Duh, (submitted to JEM, 2005)
19. 林佩君,”高頻軟磁高熵合金濺鍍薄膜之開發研究”, 國立清華大學材料科學工程 研究所碩士論文, 2003.
20. A. Inoue, Mater. Trans. Japan. Inst. Metals, 36, p.886, 1995.
21. A. Inoue, Mater. Sci. Eng., A226-A228, p.357, 1997.
22. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., 29A, p.1779, 1998.
23. A. Inoue, “Bulk Amorphous Alloys”, Trans Tech Publications, Zurich, 1999.
24. A. Inoue and Rae Eun Park, Materials Transactions, JIM, 37, 11, p.1715, 1996.
25. B. B. Prrasad, T.R. Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, J. Non-crystalline Solids, 61-2, Jan., p.391, 1984.
26. Carlisle and H. Ben, Machine Design, 58, 1, p24, 1986.
27. H. Jones, Rapid Solidification of Metals and Alloys, Inst. Of Metallurgists, London, 1982.
28. P. Haassen, J. Non- Crystalline Solis, 56, 1-3, p191, 1983.
29. F. G. Yost, J. Mater. Sci., 16, 11, p.3092, 1981.
30. D .E. Polk and B. C. Giessen, in Rapid Solidification Technology Source Book, ASM. Matals Pard, Ohio, 1983.
31. A. Makino, A. Inoue, and T. Masumoto, Mater. Trans. JIM, 36, p.924, 1995
32. Y. Yoshizawa, S. Oguma and K. Yamaguchi, J. Appl. Phys., 64, p.6044, 1988
33. Y. Yoshizawa, K. Yamaguchi, T. Yamane and H. Sugihara, J. Appl. Phys., 64, p.6047, 1988
34. Michael E. McHenry*, Matthew A. Willard, David E. Laughlin, Progress in Materials Science, 44, p.291, 1999
35. T. Miaushi, A. Makino and A. Inoue, IEEE Trans. Magn., 32, p.3784, 1997
36. Yeh J. W., Chen S. K., Lin S. J., Gan J. Y., Chin T. S., Shun T. T., Tusa C. H. and Chang S. Y., Adv. Eng. Mater., 6, p.299, 2004
37. 賴高廷,“高亂度合金微結構及性質探討”, 國立清華大學材料科學工程研究所碩士論文, 1998.
38. 許雲翔,“以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 2000.
39. 陳家裕,“塗層用高熵合金之開發”, 國立清華大學材料科學工程 研究所碩士論文, 2002.
40. B. D. Cullity, Introduction to Magnetic Materials, Indiana, 1972
41. Sushin Chikazami, Physics of Magnetism, John Wiliey & Sons Inc., chapter 3, 1964
42. Weiss Pierre, J. de Physique, 6, p.661, 1907
43. Weiss Pierre, J. Compt. Rend., 143, p.1136, 1906
44. Herzer G., in Handbook of Magnetic Materials, ed. Buschow, K.H.J., V. 10, Chap. 3, p.415, 1997
45. Herzer G., Magnetics, IEEE Trans. Magn., 26, 5, p.1397, 1990
46. M. E. Mchenry and D. E. Laughlin, Acta. Mater., 48, p.223, 2000
47. 唐敏注,”通訊用軟磁材料之特性及應用”,工業材料105期,p.42, 1995.
48. N. Saleh, A. H. Qureshi, Electron. Lett., 6, p850, 1970
49. V. Korenivski, J. Magn. Magn. Mater., 215 –216, p.800, 2000.
50. J.Y. Park, L.K. Lagorce, M.G. Allen, IEEE Trans. Magn., 33, p.3322, 1997
51. W.G. Hurley, M.C. Duffy, S. O'Reilly, S.C. O'Mathuna, Impedance formulas for planar magnetic structures with spiral windings, IEEE Power Electronics Specialists Conference, PESC'97 Record, Vol. 1, 1997, p. 627.
52. C.M. Williams, M. Abe, T. Itoh, P. Lubitz, IEEE Trans. Magn., 30, p.4896, 1994
53. I. Zaquine, H. Benazizi, J.C. Mage, J. Appl. Phys., 64, p.5822, 1988
54. V. Korenivski, R.B. van Dover, Y. Suzuki, E.M. Gyorgy, J.M. Phillips, R.J. Felder, J. Appl. Phys., 79, p.5926, 1996
55. Y. Suzuki, R.B. van Dover, E.M. Gyorgy, J.M. Phillips, V. Korenivski, D.J. Werder, C.H. Chen, R.J. Cava, J.J. Krajewski Jr., W.F. Peck, K.B. Do, Appl. Phys. Lett., 68, p.714, 1996
56. Y. Suzuki, R.B. van Dover, E.M. Gyorgy, J.M. Phillips, R.J. Felder, Phys. Rev., B53, p.14016, 1996
57. B. Viala, M.K. Minor, J.A. Barnard, J. Appl. Phys., 80, p.3941, 1996
58. S. Jin, W. Zhu, R.B. van Dover, T.H. Tiefel, V. Korenivski, L.H. Chen, Appl. Phys. Lett., 70, p.3161, 1997
59. S. Ohnuma, H. Fujimori, S. Furukwa, S. Mitani, T. Masumoto, Alloys Compounds, 222, p.167, 1995
60. K. Shirakawa, IEEE Transl. J. Magn. Japan 9, 116,61,76, 1994
61. C.H. Lee, D.H. Shin, D.H. Ahn, S.E. Nam, H.J. Kim, J. Appl. Phys., 85,4898, 1999
62. M. Yamaguchi, K. Suezawa, K.I. Arai, Y. Takahashi, S. Kikuchi, Y. Shimada, W.D. Li, S. Tanabe, K. Ito, J. Appl. Phys., 85, p.7919, 1999
63. A. Inoue,Y. Shimohra, J. S. Gook, Mat. Trans. JIM., p.36, 1427, 1995.
64. R. F. Soohoo, IEEE Trans. Magn., MAG-15, p.1803, 1970
65. M. Yamaguchi, S. Arakawa, H. Ohzeki, Y.Hayashi and K. I. Arai, IEEE Trans. Magn., 28, p.3015, 1992
66. M. Yamaguchi, M. Baba and K. I. Arai, IEEE Trans. Microw. Theory, 49, p.2331, 2001
67. V. Korenivski, R.B. van Dover, J. Appl. Phys., 82, p.5247, 1997
68. O. Oshiro, H. Tsujimoto, K. Shirae, IEEE Transl. J. Magn. Japan 6,p.436, 1991
69. A. Gromov, V. Korenivski, K.V. Rao, R.B. van Dover, P.M. Mankiewich, IEEE Trans. Magn., 34, p.1246, 1998
70. A. Gromov, V. Korenivski, D. Haviland, R.B. van Dover, J. Appl. Phys., 85, p.5202, 1999
71. H. Suhl, IEEE Trans. Magn., 34, p.1834, 1998
72. N.S. Almeida, D.L. Mills, Phys. Rev. B, 53, p.12232, 1996
73. A. Sukstanskii, V. Korenivski, J. Magn. Magn. Mater., 218, p.144, 2000
74. R.D. McMichael, M.D. Stiles, P.J. Chen, W.F. Egelhoff Jr., J. Appl. Phys., 83, p.7037, 1998
75. A. Sukstanskii, V. Korenivski and A. Gromov, J. Appl. Phys., 89, p.755, 2001
76. J. I. Goldstein, D. E. Newbury, P.Echlin, D.C. Joy, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, (1981)
77. M. Yamaguchi, O. Acher, Y. Miyazawa, K. I. Arai, and M. Ledieu, J. Magn. Magn. Mater., 242, (2002), 970
78. D. Pain, M. Ledieu, O. Acher, A. L. Adenot, and F. uverger, J. Appl. Phys., 85, (1999), 5151
79. R. Alben, J. J. Becker and M. C. Chi, “Random anisotropy in amorphous ferromagnets”, Journal of Applied Physics, 49 (3), 1653 (1978)
80. T. K. Kim and M. Takahashi, Appl. Phys. Lett., 20, (1972), 492
81. A. Wold, R. Arnott, and N. Menyuk, J. Phys. Chem. Solids, 65, (1961), 1068
82. H. Naganuma, R. Nakatani, Y. Endo, Y. Kawamura, and M. Yamamto, Science and Technology of Advanced Materials., 5, (2004), 101
83. D. Spenato, A. Fessant, J. Gieraltowski, H. Le Gall, and C. Tannous, J. Appl. Phys., 85, (1999), 6010