簡易檢索 / 詳目顯示

研究生: 林家民
Chia-Min Lin
論文名稱: 整合高分子模具及卡榫封裝之改良式SCREAM製程
Integration of polymer molding and modified SCREAM process
指導教授: 方維倫
Weileun Fang
傅建中
Chien-Chung Fu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 100
中文關鍵詞: 卡榫高分子鑄模技術
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是設計、製作與測試「整合高分子模具及卡榫封裝之改良式SCREAM製程」。本研究嘗試改良美國 Cornell Univ. 開發的SCREAM製程,以便較精確的掌握元件幾何外形和機械特性。另外,除了完成微機電元件外,本文也同時利用改良式 SCREAM 製程,於矽基材製作模具,然後進一步利用高分子鑄模技術,完成高分子撓性卡榫保護蓋,最後透過簡易組裝完成微機電元件的保護。藉由高分子撓性卡榫保護蓋與材料性質,初步完成防止水分及灰塵顆粒入侵微機電元件。
    本文已成功驗證改良式SCREAM製程之可行性,製作出兩種XY移動平台,包括:(1)靜電致動式;(2)熱致動式。以改良式SCREAM製程同時完成高分子撓性卡榫保護蓋模具,透過高分子鑄模技術,完成卡榫結構。將微機電元件與高分子撓性卡榫保護蓋組裝後,經初步測試驗證達成防止水分入侵元件功能。


    第1章 前言 1 1-1 研究動機 1 1-2 文獻回顧 2 1-2.1 單晶矽基材懸浮結構製程方法 2 1-2.2 XY移動平台 4 1-2.3 鑄模法 5 1-2.4 卡榫結構 7 1-3 研究目標 8 第2章 系統架構之設計與分析 25 2-1 XY移動平台之設計與分析 25 2-1.1 靜電致動式XY移動平台 25 2-1.2 熱致動式XY移動平台 28 2-2 高分子撓性卡榫保護蓋之設計與分析 29 第3章 製程與實驗結果 45 3-1 微機電元件及矽模具之製程流程與結果 45 3-1.1 製程流程 45 3-1.2 製程結果 47 3-1.3 矽基材模具製程結果 48 3-2 高分子鑄模技術之製程流程與結果 48 3-2.1 高分子材料特性概述 49 3-2.2 鑄模製程流程 50 3-2.3 高分子元件之製程結果 51 第4章 量測與實驗架設 74 4-1 XY移動平台特性量測-靜電致動式 74 4-2 XY移動平台特性量測-熱致動式 74 4-3 高分子撓性卡榫結構連結力與脫模力測試 75 4-4 微機電元件與高分子撓性卡榫保護蓋接合組裝 76 第5章 結論與未來工作 89 5-1 結論 89 5-2 未來工作 89 第6章 參考文獻 95

    [1] L. Y. Lin, S. S. Lee, M. C. Wu, and K. S. J. Pister, “Micromachined integrated optics for free-space interconnections,” The eighth annual international conference on MEMS, Amsterdam, The Netherlands, February, 1995, pp77-82.
    [2] E. E. Hui, R. T. Howe, and M. S. Rodgers, “Single-step assembly of complex 3-D microstructures,” The thirteenth annual international conference on MEMS, Miyazaki, Japan, January, 2000, pp602-607.
    [3] J. Hsieh, and W. Fang, “BELST process for improved high-aspect-ratio silicon micromachining and its applications,” Journal of Micromechanics and Microengineering, 12, pp 574-581, 2002.
    [4] J. Hsieh, C. C. Chu, J. M.-L. Tsai, and W. Fang, “Using extended BELST process in fabricating vertical comb actuator for optical applications,” IEEE/LEOS Int. Conf. on Optical MEMS and their Application, Lugano, Switzerland, August, 2002, pp133-134.
    [5] Y. X. Li, P. J. French, P. M. Sarro, and R. F. Wolffenbuttel, “Fabrication of a single crystalline silicon capacitive lateral accelerometer using micromachining based on single step plasma etching,” The eighth annual international conference on MEMS, Amsterdam, The Netherlands, February, 1995, pp398-403.
    [6] M. de Boer, H. Jansen, and M. Elwenspoek, “The black silicon method V:a study of the fabrication of movable structures for micro electro-mechanical systems,” The eighth international conference on solid-state sensors,actuators and microsystems, Stockholm, Sweden, June, 1995, pp565-568.
    [7] P. J. Schubert, and G. W. Neudek, “Confined lateral selective epitaxial growth of silicon for device fabrication,” IEEE electron device letter, 11, pp 181-183, 1990.
    [8] B. Diem, M. T. Delaye, F. Michel, S. Renard, and G. Delapoerre, “SOI as a substrate for surface micromachining of single crystalline silicon sensors and actuators,” The seventh international conference on solid-state sensors,actuators and microsystems, Yokohama, Japan, 1993, pp233-236.
    [9] S. T. Cho, “A batch dissolved wafer process for low cost sensor applications,” SPIE proc. Micromachining and microfabrication process technology, Austin, TX, 1995, pp10-17.
    [10] T. E. Bell, P. T. J. Gennissen, D. DeMunter, and M. Kuhl, “Porous silicon as a sacrificial material,” Journal of Micromechanics and Microengineering, 6, pp 361-369, 1996.
    [11] N. C. MacDonald, “SCREAM Microelectromechanical Systems,” Microelectronic engineering, 32, pp149-73, 1996.
    [12] W. Zhang, W. Zhang, K. Turner, and P. G. Hartwell, “SCREAM’03:A single mask process for high-Q single crystal silicon MEMS,” Proceedings of IMECE04 2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim, California USA, November, 2004, pp1-5.
    [13] L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve,D. F. Guillou, M. S. C. Lu, T. Mukherjee, and S. Santhanam, “Single-chip computers with microelectromechanical systems-based magnetic memory,” Journal of applied physics, 87, pp 6680-6685, 2000.
    [14] J. J. Choi, H. Park, K. Y. Kim, and J. U. Jeon, “Electromagnetic micro xy-stage for probe-based data storage,” Journal of semiconductor technology and science, 1, pp 84-93, 2001.
    [15] C. H. Kim, and Y. K. Kim, “Micro XY-stage using silicon on a glass substrate,” Journal of Micromechanics and Microengineering, 12, pp 103-107, 2002.
    [16] C. H. Kim, H. M. Jeong, J. U. Jeon, and Y. K. Kim, “Silicon micro XY-stage with a large area shuttle and no-etching holes for SPM-based data storage,” Journal of microelectromechanical systems, 12, pp 470-478, 2003.
    [17] K. Takahashi, K. Saruta, M. Mita, H. Fujita, and H. Toshiyoshi, “An optical lens scanner with electrostatic comb drive XY stage,” IEEE/LEOS Int. Conf. on Optical MEMS and their Application, Takamatsu, Japan, August, 2004, pp56-57.
    [18] K. C. Lee, and S. S. Lee, “Deep X-ray mask with integrated electro-thermal micro xy-stage for 3D fabrication,” Sensors and actuators A:physical , 111, pp 37-43, 2004.
    [19] H. N. Kwon, J. H. Lee, K. J. Takahashi, and H. Toshiyoshi, “Micro xy-stages with spider-leg actuators for 2-dimensional optical scanning,” The thirteenth international conference on solid-state sensors,actuators and microsystems, Seoul, Korea, June, 2005, pp69-72.
    [20] Y. C. Tung, and K. Kurabayashi, “A single-layer PDMS-on-silicon hybrid microactuator with multi-axis out-of-plane motion capabilities-part I:design and analysis,” Journal of microelectromechanical systems, 14, pp 548-557, 2005.
    [21] Y. C. Tung, and K. Kurabayashi, “A single-layer PDMS-on-silicon hybrid microactuator with multi-axis out-of-plane motion capabilities-part II:fabrication and characterization,” Journal of microelectromechanical systems, 14, pp 558-566, 2005.
    [22] Y. Fu, and N. K. A. Bryan, “Novel one-step method of microlens mold array fabrication,” Opt. Eng., 40, pp 1433-1434, 2001.
    [23] K. Wang, and K. F. Bohringer, “Time-miltiplexed-plasma-etching of high numerical aperture paraboloidal micromirror arrays,” Lasers and Electro-Optics, 2003.
    [24] S. M. Kim, and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” JOURNAL OF PHYSICS D:APPLIED PHYSICS, 36, pp 2451-2456, 2003.
    [25] S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” Journal of Micromechanics and Microengineering, 13, pp 98-103, 2003.
    [26] D. Nilsson, S. Jensen, and A. Menon, “Fabrication of silicon molds for polymer optics,” Journal of Micromechanics and Microengineering, 13, pp 57-61, 2003.
    [27] S. C. Kuo, and Y. Chou, “A novel polymer microneedle arrays and PDMS micromolding technique,” Tamkang Journal of Science and Engineering, 2, pp 95-98, 2004.
    [28] D. S. W. Park, K. Kim, B. Pillans, and J. B. Lee, “Polydimethylsiloxane-based pattern transfer process for the post-IC integration of MEMS onto CMOS chips,” Journal of Micromechanics and Microengineering, 14, pp 335-340, 2004.
    [29] K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” Journal of Micromechanics and Microengineering, 15, pp 873-882, 2005.
    [30] H. Han, L. E. Weiss, and M. L. Reed, “Micromechanical Velcro,” Jourmal of microelectromechanical systems, 1, pp37-43, 1992.
    [31] R. Dizon, H. Han, A. G. Russell, and M. L. Reed, “An Ion Milling Pattern Transfer Technique for Fabrication of Three-Dimensional Micromechanical Structures,” Jourmal of microelectromechanical systems, 2, pp151-159, 1993.
    [32] M. Liger, D. C. Rodger, and Y. C. Tai, “Robust parylene-to-silicon mechanical anchoring,” The sixteenth annual international conference on MEMS, Kyoto, Japan, January, 2003, pp602-605.
    [33] M. P. Larsson, R. R. A. Syms, and A. G. Wojcik, “Improved adhesion in hybrid Si-polymer MEMS via micromechanical interlocking,” Journal of Micromechanics and Microengineering, 15, pp 2074-2082, 2005.
    [34] M. P. Larsson, and M. M. Ahmad, “Improved polymer-glass adhesion through micro-mechanical interlocking,” Journal of Micromechanics and Microengineering, 16, pp 161-168, 2006.
    [35] G. Zhou, and P. Dowd, “Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators,” Journal of Micromechanics and Microengineering, 13, pp 178-183, 2003.
    [36] T. Hirano, T. Furuhata, K. J. Gabriel, and H. Fujita, “Design, fabrication, and operation of submicron gap comb-drive microactuators,” Journal of microelectromechanical systems, 1, pp 52-59, 1992.
    [37] 張佐吉, “ 晶片級微測試儀器之開發及其於薄膜材料機械性質量測之應用,” 國立清華大學動力機械工程學系碩士論文, 2005.
    [38] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” Journal of Micromechanics and Microengineering, 6, pp 320-329, 1996.
    [39] E. T. Enikov, S. S. Kedar, and K. V. Lazarov, “Analytical model for analysis and design of V-shape thermal microactuators,” Journal of microelectromechanical systems, 14, pp 788-798, 2005.
    [40] J. S. Park, L. L. Chu, E. Siwapornsathain, A. D. Oliver, and Y. B. Gianchandani, “Long throw and rotary output electro-thermal actuators based on bent-beam suspensions,” The thirteenth annual international conference on MEMS, Miyazaki, Japan, January, 2000, pp680-685.
    [41] http://www.dowcorning.com
    [42] http://search.globalspec.com/Search
    [43] http://www.paryleneinc.com

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE