研究生: |
李孟家 Lee, Meng-Chia |
---|---|
論文名稱: |
橫向高電壓4H-SiC 佈值雙漂移區金氧半電晶體設計與製作 The design and fabrication of lateral high voltage 4H-SiC two-zone resurf MOSFETs |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 橫向 、高電壓 、碳化矽 |
外文關鍵詞: | Lateral, high voltage, SiC |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, a lateral 4H-SiC two-zone RESURF MOSFET fabricated on a semi-insulating substrate is presented. With the two-zone design in the drift region, a local peak electric field will occur at the point between zone1 and zone2 as the device is operated in the blocking mode, facilitating the depletion in the bulk before the maximum electric field causing the breakdown at the gate or drain field plate edge. By using a semi-insulating substrate, the charge compensation between the P-type and N-type layers can be better controlled owing to the absence of the substrate-assisted-depletion effect.
The measurement indicates that the mobility and the on-resistance of the device suffer from the severe channel surface roughness as a result of step-bunching after activating the sample at 1650℃. As for the voltage-blocking capability, the best achieved breakdown voltage is 3200V for a device with 80μm-drift region and 5μm-channel length. Ron of this device is 12.6Ω-cm2.
碳化矽是一種寬能帶半導體,因為其高臨界電壓、良好熱導率及高飽和電子速度的特性使得碳化矽在功率元件領域應用日與俱增。而在所有寬能帶半導體中,碳化矽能以熱氧化法成長二氧化矽氧化層,提供了碳化矽金氧半場效電晶的化學穩定且緻密的介電層。然而,碳化矽電晶體卻由於基板本身的高臨界電壓及其與介電層的介電常數比值,使得元件易崩潰於介電層而非塊材,因此如何改善峰值電場是相當重要的課題。
在此篇論文中,我們在半絕緣基板上製作了橫向4H-SiC雙漂移區金氧半場效電晶體。藉由雙漂移區的設計,在汲極或閘極端峰值電場造成崩潰之前,發生在第一漂移區與第二漂移區交界的峰值電場將會更有效地空乏基板,達到更優越的崩潰電壓。另外半絕緣基板也消除了在傳統P型基板上會發生的協助空乏效應。 從量測結果得知,元件導通電阻和通道電子遷移率並不理想,其原因為在離子佈植活化時遭遇到了step-bunching的問題,使得通道表面極為不平整,另一方面由溫度特性也可得知此元件存在有嚴重的介面補陷,並限制了電子遷移率。在崩潰量測方面,通道長度5μm,漂移區長度80μm 元件最高可達3200V的崩潰電壓。而此元件的導通電阻為12.6Ω-cm2。
[1] R. Powell and L. B. Rowland, “SiC Material-Progress Status and Potential Roadblocks,” IEEE Proc., vol. 60, pp. 942-955, 2002.
[2]H. S. Lee, “High Power Bipolar Junction Transistors in Silicon Carbide,” ISRN KTH/EKT/FR-2005/6-SE.
[3]K. Shenai, R. S. Scott, and B. J. Baliga, “Optimum Semiconductors for High-Power Electronics,” IEEE Trans. Electron Device, vol. 36, pp. 1811, 1989.
[4]J. Spitz, M. R. Melloch , J. A. Cooper, Jr. and M. A. Capano, “2.6kV 4H-SiC Lateral DMOSFET’s,” IEEE Electron Device Lett., vol. 19, pp. 100-102, 1998.
[5]J. A. Appels and H. M. J. Vas, “HIGH VOLTAGE THIN LAYER DEVICES (RESURF DEVICES),” IEDM Tech. Dig., pp. 238, 1979.
[6]T. Fujihira, Y. Onishi, S. Iwamoto, and T. Sato, “24 mΩ-cm2 680V Silicon Superjunction MOSFET,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 241–244, 2002.
[7]W. Saito, I. Omura, S. Aida, S. Koduki, M. Izumisawa, H. Yoshioka, and T. Ogura, “High Breakdown Voltage (>1000 V) Semi-Superjunction MOSFETs using 600-V class Superjunction MOSFET Process,” IEEE Trans. Electron Devices, vol. 52, pp. 2317-2322, 2005.
[8]S. G. Nassif-Khalil and C. A. T. Salama, “ Super-junction LDMOST on a Silicon-on-Sapphire Substrate,” IEEE Trans. Electron Devices, vol. 50, pp. 1385-1391, 2003.
[9]S. G. Nassif-Khalil, Li Zhang Hou, and C. A. T. Salama, “SJ/RESURF LDMOST,” IEEE Trans. Electron Devices, vol. 51, no. 7, 2004.
[10]Tsunenobu Kimoto, Hiroaki Kawano, and Jun Suda, “1330 V, 67 mΩ-cm2 4H-SiC(0001) RESURF MOSFET,” IEEE Electron Devices, vol. 26, no. 9, September 2005.
[11]Koishikawa, Y., et al, “Double RESURF device technology for power ICs’,” NEC Res. Dev., 1994, 35, (4), pp. 438–443.
[12]De Souza, M.M., and Sankara Narayanan, E.M “Double RESURF technology for HVICs’,” Electron. Lett., 1996, 32, (12), p. 1092.
[13]C. F. Huang, J. R. Kuo, and C. C. Tsai, ”High Voltage (3130 V) 4H-SiC Lateral p-n Diodes on a Semiinsulating Substrate, ” IEEE Electron Device Lett, vol. 29, no.1, January 2008.
[14]Y. Song, S. Dhar, and L. C. Feldman, ”Modified Deal Grove model for the thermal oxidation of silicon carbide,” Journal of Applied Physics vol. 95, no. 9, 1 May 2004.
[15]Matthias Roschke, and Frank Schwierz, “Electron Mobility Models for 4H, 6H, and 3C SiC, “ IEEE TRANSACTIONS on Electron Devices, vol. 48, no. 7, July 2001.
[16]D. A. Neamen, “Semiconductor Physiscs and Device,” Third Edition.
[17]A .Perez-Tomas, P. Godignon a, N. Mestres b, J. Millana, “Afield-effect electron mobility model for SiC MOSFETs including high density of traps at the interface,” Microelectronic Engineering 83, 2006.
[18]Handoko Linewih, Sima Dimitrijev, Kuan Yew Cheong, “Channel carrier mobility parameters for 4H SiC MOSFETs, “Microelectronics Reliability 43, 2003.
[19]C. Y. Lu, J. A. Cooper, Jr. Takashi Tsuji, Gilyong Chung, J. R. Williams, Kyle McDonald, and L. C. Feldman, “Effect of Process Variations and Ambient Temperature on Electron Mobility at the SiO2/4H-SiC Interface, “IEEE TRANSACTIONS on Electron Devices, vol. 50, no. 7, July 2003.