簡易檢索 / 詳目顯示

研究生: 何曉碩
Hsiao-Shuo Ho
論文名稱: 金屬(Al)/氧化鋯(ZrO2)及氧化釤(Sm2O3)/矽(Si)薄膜電容器與場效電晶體之製作與電性分析
指導教授: 李雅明
Joseph Ya-Min Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 99
中文關鍵詞: 高介電材料電晶體電容器氧化鋯氧化釤電子遷移率
外文關鍵詞: high-k, MOSFET, MIS, ZrO2, Sm2O3, mobility
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗中,我們使用射頻磁控濺鍍法沈積氧化鋯(ZrO2)和氧化釤(Sm2O3)薄膜,成功地製作了金屬(Al)/氧化鋯(ZrO2)與氧化釤(Sm2O3)/半導體(p-Si)結構的電容器與電晶體。我們另外製作金屬(Al)/二氧化矽(SiO2)/半導體(p-Si)結構的電晶體來當作參考。
    我們以split C-V的量測方式,來萃取有效載子移動率(effective mobility),得到ZrO2電晶體最大有效載子移動率為211 cm2/V-s,Sm2O3電晶體最大有效載子移動率為238 cm2/V-s。再經由變溫實驗(11~300K),得到N通道的閘極場效電晶體有效通道電子移動率的衰減機制與臨限電壓 (threshold voltage, VTH) 的漂移狀況與溫度的變化,來探討載子遷移率衰退機制分析。
    實驗結果發現,ZrO2電晶體比SiO2電晶體受到更嚴重的庫侖散射,很有可能是因為有較多的oxide trapped charges存在於ZrO2所造成。Sm2O3電晶體比SiO2電晶體受到更嚴重的聲子散射,很有可能是因為high-k薄膜的軟性光學聲子所造成。


    Metal-oxide-semiconductor (MOS) capacitors and n-channel metal-oxide-semiconductor-field-effect-transistors (MOSFETs) with ZrO2 and Sm2O3 gate dielectrics were fabricated. The mobility degradation mechanisms of ZrO2 and Sm2O3-gated transistors were studied in the temperature range from 11K to 300K. N-MOSFETs with SiO2 gate dielectric was used as the reference. The effective electron mobility was measured by the split C-V method. The electron mobility of n-MOSFETs with ZrO2 and Sm2O3 gate dielectrics are 211 and 238 cm2/V-s, respectively. The variation of the threshold voltage and the electron mobility as a function of temperature was characterized. Comparing with SiO2-gated transistors, the electron mobility of ZrO2-gated n-MOSFETs is limited by additional Coulomb scattering at electric field above 0.33 MV/cm. The reason is most likely due to higher density of oxide trapped charges in the ZrO2 layer. Comparing with SiO2- gated transistors, the electron mobility of Sm2O3-gated n-MOSFETs is limited by additional phonon scattering at electric field above 0.22 MV/cm. The reason is most likely due to soft optical phonons in Sm2O3-gated n-MOSFETs.

    第一章 緒論-------------------------------------------------------------------------1 1.1 高介電常數(High-κ)薄膜於極大型積體電路(ULSI)的發展-----------1 1.2 研究動機---------------------------------------------------------------------------2 1.3 高介電常數薄膜在動態存取記憶體(DRAM)上的應用------------------2 1.4 ZrO2 和Sm2O3薄膜的製備------------------------------------------------------3 1.5 high-k薄膜於MOSFET閘極氧化層(Gate Oxide)的發展------------------4 1.6 本論文的研究方向---------------------------------------------------------------4 第二章 熱穩定性(Thermodynamic Stability)之探討--------------6 2.1 「熱穩定性」理論簡介------------------------------------------------------------6 2.2 矽化物(Silicide)及矽酸鹽(Silicate)的產生--------------------------------7 2.3 其他相關文獻---------------------------------------------------------------------8 第三章 ZrO2和Sm2O3(氧化鋯和氧化釤)薄膜元件的製備-------9 3.1 射頻磁控濺鍍法(RF Magnetron Sputtering)的簡介-----------------------9 3.2 歐姆接面(Ohmic contact)的製備--------------------------------------------10 3.3 ZrO2和Sm2O3薄膜的成長------------------------------------------------------10 3.4 ZrO2和Sm2O3薄膜電容器的製備---------------------------------------------11 3.5 ZrO2和Sm2O3薄膜電晶體的製備---------------------------------------------11 3.6 量測儀器以及實驗儀器介紹--------------------------------------------------14 3.7 蝕刻上遭遇到的問題-----------------------------------------------------------14 第四章 ZrO2和Sm2O3薄膜基本介紹及物性量測分析-----------16 4.1 X-Ray 繞射分析-----------------------------------------------------------------16 第五章 Al/ ZrO2和Sm2O3/Silicon電容器基本電性及漏電流機制分析------------------------------------------------------------------------------------17 5.1 C-V(電容-電壓)特性曲線量測------------------------------------------------17 5.2 I-V(電流-電壓)特性曲線量測--------------------------------------------------17 5.3 漏電流傳導機制之簡介--------------------------------------------------------18 5.3.1 蕭基發射(Schottky emission)------------------------------------------19 5.3.2 普爾-法蘭克發射(Poole-Frenkel Emission)-------------------------20 5.3.3 傅勒-諾得翰穿隧(Fowler-Nordheim Tunneling)---------------------20 5.4 MIS結構電容器與溫度變化之漏電流傳導機制分析---------------------21 5.5 絕緣層中電子有效質量--------------------------------------------------------24 5.6 本章結論--------------------------------------------------------------------------25 第六章 Al/ ZrO2和Sm2O3/Silicon場效電晶體電性量測及載子遷移率衰退機制分析-------------------------------------------------------27 6.1 IDS-VDS Curve的特性探討------------------------------------------------------27 6.2 IDS-VGS Curve的特性探討------------------------------------------------------27 6.3次臨界斜率(Subthreshold Swing)---------------------------------------------28 6.4 臨界電壓(VT)的粹取-----------------------------------------------------------29 6.5 遷移率(Mobility)的探討-------------------------------------------------------30 6.5.1 Split-capacitance-voltage的量測---------------------------------------31 6.6電晶體的溫度特性(Temperature dependent)與遷移率衰減機制(Mobility degradation)的討論---------------------------------------------------------------32 6.6.1電晶體的溫度特性--------------------------------------------------------32 6.6.2 ZrO2和Sm2O3作閘極氧化層電晶體的遷移率衰退機制-----------34 第七章 結論---------------------------------------------------------------36 參考資料(Reference)-----------------------------------------------------38 實驗圖表(Experimental Diagrams and Tables)--------------------42 Appendix A. 電晶體製程之三道光罩圖-----------------------------92 Appendix B. 低溫量測設備--------------------------------------------98

    [1] S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s”, IEEE Electron Device Lett., vol. 18, no. 5, pp. 209-211, 1997.
    [2] S. Saito, D. Hisamoto, S. Kimura, and M. Hiratani, “Unified mobility model for high-k gate stacks”, in IEDM Tech Dig., 2003, pp. 797-800.
    [3] Shin-ichi Takagi and Mariko Takayanagi, “Experimental evidence of inversion- layer mobility lowering in ultrathin gate oxide Metal-Oxide-Semiconductor field- effect-transistors with direct tunneling current ”, Jpn. J. Appl. Phys., vol. 41, no. 4B, pp. 2348-2352, 2002.
    [4] Shin-ichi Saito, Kazuyoshi Torii, Yasuhiro Shimamoto, Osamu Tonomura, Digh Hisamoto, Takahiro Onai, Masahiko Hiratani, and Shin’ichiro Kimura, “Remote-
    charge-scattering limited mobility in field-effect transistors with SiO2 and Al2O3/SiO2 gate stacks”, J. Appl. Phys. 98, 113706, 2005.
    [5] B. C. Lai, N. Kung, and J. Y. Lee, “A study on the capacitance -voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications,” J. Appl. Phys., vol. 85, no. 8, pp. 4087-4090, 1999.
    [6] Y.-S. Lin, R. Puthenkovilakam, and J. P. Chang, “Interfacial properties ZrO2 on silicon”, J. Appl. Phys., vol. 93, no. 10, pp. 5945-5952, 2003.
    [7] R. Mahapatra, Je-Hun Lee, S. Maikap, G. S. Kar, A. Dhar, Nong-M. Hwang, Doh-Y. Kim, B.K. Mathur, S. K. Ray, “Electrical and interfacial characteristics of ultrathin ZrO2 gate dielectrics on strain compensated SiGeC/Si heterostructure”, Appl. Phys. Lett., vol. 82, no. 14,pp. 2320-2322, 2003.
    [8] A.A. Dakhel, “Dielectric and optical properties of samarium oxide thin films”, J. Alloys and Compounds 365, pp. 233-239, 2004.
    [9] Sanghun Jeon, Kiju Im, Hyundoek Yang, Hyelan Lee, Hyunjun Sim, Sangmu Choi, Taesung Jang, and Hyunsang Hwang, “Excellent electrical characteristics of lanthanide (Pr, Nd, Sm, Gd, and Dy) oxide and lanthanide-doped oxide for MOS gate dielectric Applications”, in IEDM, 2001, pp. 471-474.
    [10] V. A. Rozhkov, V. P. Goncharov, and A. Yu. Trusova, “Electrical and photoelectrical properties of MIS structure with rare earth oxide films as insulator”, IEEE 5th International Conference on Conduction and Breakdown in Solid Dielectrics, pp. 552-555, 1995.
    [11] V. A. Rozhkov, A. Yu. Trusova, and I. G. Berezhnoy, “Silicon MIS structure using samarium oxide films”, Thin Solid films 325, pp. 151-155, 1998.
    [12] W. K. Chim, T. H. Ng, B. H. Koh, W. K. Choi, J. X. Zheng, C. H. Tug, and A.Y. Du,” Interfacial and bulk properties of zirconium dioxide as a gate dielectric in metal-
    insulator-semiconductor structures and current transport mechanisms”, J. Appl. Phys., vol. 93, no. 8,pp. 4788-4793, 2003.
    [13] J. P. Chang and Y.-S. Lin, “Dielectric property and conduction mechanism of ultrathin zirconium oxide films”, Appl. Phys. Lett., vol. 79, no. 22, pp. 3666-3668, 2001.
    [14] M. Houssa, M. Tuominen, M. Naili, V. Afanas’ev, A. Stesmans, S. Haukka, M. M. Heyns, “Trap-assisted tunneling in high permittivity gate dielectric stacks”, J. Appl. Phys., vol. 87, no. 12, pp. 8615-8620, 2000.
    [15] Hiroyuki Ishii, Anri Nakajima, and Shin Yokoyama, “Growth and electrical properties of atomic-layer deposited ZrO2/Si-nitride stack gate dielectrics”, J. Appl. Phys., vol. 95, no. 2, pp. 536-542, 2004.
    [16] Fu-Chien Chiu, Zhi-Hong Lin, Che-Wei Chang, Cen-Chih Wang Kun-Fu Chuang, Chih-Yao Huang, Joseph Ya-min Lee, and Huey-Liang Hwang, “Electron conduction mechanism and band diagram of sputter-deposited Al/ZrO2/Si structure”, J. Appl. Phys. 97, 034506, 2005.
    [17] J. P. Chang and Y.-S. Lin, “Thermal stability of stacked high-k dielectric on silicon”, Appl. Phys. Lett., vol. 79, no. 23, 2001.
    [18] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon”, J. Mater. Res., vol. 11, no. 11, pp. 2757-2776, 1996.
    [19] S. M. Sze, Physics of semiconductor device, 2nd ed., Wiley, New York, 1981.
    [20] Yuan Taur and Tak H. Ning, Fundamentals of modern VLSI devices, Cambridge University Press, 1998.
    [21] Fritz H. Gaensslen, V. Leo Rideout, E. J. Walker, and John J. Walker, ”Very small MOSFET’s for low temperature operation”, IEEE Trans. Electron Devices, vol. 24, no. 3, pp.218-229, 1997.
    [22] D. K. Schroder, Semiconductor Material and Device Characteristics, Wiley, Arizona, 1998.
    [23] S. G. Sun and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxided silicon surfaces,” IEEE Trans. Electron Devices, 27, p. 1497, 1980.
    [24] C. G. Sodini, T. W. Ekstedt, and J. L. Moll, “Charge accumulation and mobility in thin dielctric MOS transistors,” Solid State Electron., 25, no. 9, p. 833, 1982.
    [25] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration”, IEEE Trans. Electron Devices, vol. 41, no. 12, p. 2357, 1994.
    [26] Ming-Tsong Wang, Bonds Yi-Yi Cheng, and Joseph Ya-min Lee, “Temperature- dependent degradation mechanisms of channel mobility in ZrO2-gated n-channel metal-oxide-semiconductor field-effect transistor”, Appl. Phys. Lett. 88, p. 242905, 2001.
    [27] L. Vadasz and A. S. Grove, “Temperature dependence of MOS transistor characteristics below saturation”, IEEE Trans. Electron Devices, vol. 13, no. 12, 1966.
    [28] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high- insulator: The role of remote phonon scattering”, J. Appl. Phys. 90, p. 4587, 2001.
    [29] Robert Chau, Suman Datta, Mark Doczy, Brain Doyle, Jack Kavalieros, and Matthew Metz, “ High-k/metal-gate stack and its MOSFET characteristics”, IEEE EDL, vol. 25, no. 6, pp. 408-410, 2004.
    [30] Olivier Weber, Mikael Casse, Laurent Thecenod, Frederique Ducroquet, Thomas Ernst, Simon Deleonibus, Solid-State Electronics 50, pp. 626-631, 2006.
    [31] Mikael Casse, Laurent Thevenod, Bernard Guillaumot, Lucie Tosti, Francois MMartin, Jerome Mitard, Olivier Weber, Francois Andrieu, Thomas Ernst, Gilles Reimbold, Thierry Billon, Mireille Mouis, Fabien Boulanger, “Carrier Transport in HfO2/metal gate MOSFETs: physical insight into critical parameters”, IEEE Trans. Electron Devices, vol. 53, no. 4, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE