簡易檢索 / 詳目顯示

研究生: 許育碩
Hsu, Yu-Shuo
論文名稱: 鹽橋在芳烷基胺乙醯基轉移酶之結構與功能探討
Structural and functional insights into the role of the salt bridge in arylalkylamine N-acetyltransferase
指導教授: 呂平江
Lyu, Ping-Chiang
口試委員: 鄭惠春
Cheng, Hui-Chun
吳昆峯
Wu, Kuen-Phon
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 80
中文關鍵詞: 乙醯基轉移酶乙醯輔酶AX射線晶體學芳烷基胺乙醯轉移酶胍丁胺等溫滴定量熱法
外文關鍵詞: N-acetyltransferase, acetyl-coenzymeA, X-ray crystallography, arylalkylamine N-acetyltransferase, agmatine, ITC
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 芳烷基胺乙醯基轉移酶(AANAT)負責將乙醯基從乙醯輔酶A(AcCoA)轉移到芳烷基胺上,並且參與許多生物體的生理功能。芳烷基胺乙醯基轉移酶的催化循環遵循有順序的機制,需先與輔因子(AcCoA)結合,再與基質結合,之後完成乙醯基轉移反應。其催化循環可以分為四個階段,包括初始階段、輔因子結合階段、基質結合階段和反應階段。其中在初始階段和輔因子結合階段之間可觀察到顯著的結構變化,最顯著的變化是P環(P-loop)向乙醯輔酶A的入口移動,同時P環上的精胺酸和在α1上的麩胺酸/天冬胺酸會形成鹽橋以穩定這個P環移動。此外,基質結合口袋和催化位點也在這個階段形成。在這項研究中,我們在兩種芳烷基胺乙醯基轉移酶中建構了鹽橋突變體,分別是多巴胺乙醯基轉移酶(Dat)和胍丁胺乙醯基轉移酶(AgmNAT)。透過DTNB測定酵素活性、使用等溫滴定微量熱儀(ITC)量測配體結合親和力,並利用晶體繞射解析他們的結構變化。在我們的研究中顯示缺少鹽橋會大幅降低配體結合能力和酶活性,但在胍丁胺乙醯基轉移酶突變體中基質結合能力並未降低。從多巴胺乙醯基轉移酶突變體 Dat-D46A的結構沒有觀察到P環移動,而且負責催化的殘基和底物結合的殘基的側鏈們都沒有移動到正確的位置。此外,也沒有形成完整的配體結合通道來調控配體的進出。胍丁胺乙醯基轉移酶突變體AgmNAT-R138A-S171A的結構揭示了與Dat-D46A相似的結果。因此,這種保守鹽橋在芳烷基胺乙醯基轉移酶的作用可能是一種結構轉換開關,由輔因子結合觸發,然後促進底物結合口袋和催化位點的形成。


    Arylalkylamine N-acetyltransferase (AANAT) is responsible for acetyl transfer from acetyl coenzyme A (AcCoA) to arylalkylamine and involved in many physiological functions. The catalytic cycle of AANAT follows an ordered sequential mechanism and can be recognized as several stages, including the initial stage (apo form), cofactor binding stage, substrate binding stage, and catalysis stage. Comparison of AANATs structures in apo form and complexes reveals that significant conformational changes are observed between the initial stage and cofactor binding stage. The most significant changes are the shift of P-loop toward the bound cofactor to stabilize it, while a salt bridge newly formed by Glu/Asp on α1 and Arg on P-loop to fix this movement. The substrate binding pocket and catalytic site are also formed in this cofactor binding stage. In this study, we constructed mutants of the salt bridge in two AANATs, Dopamin N-acetyltransferase (Dat) and Agmatine N-acetyltransferase (AgmNAT), and then surveyed their acetyl transfer activities by DTNB assay, ligands binding affinities by isothermal titration calorimetry (ITC), and structures by crystallography. Our data revealed that the loss of salt bridge largely reduced the ligands binding abilities and catalytic activity, but the substrate binding abilities was not reduced in AgmNAT mutants. Structures of Dat-D46A showed that the P-loop movement was not observed, while the side chains of catalytic residues and substrate binding residues did not move to the correct positions. In addition, whole ligands binding tunnel was not formed well to control the entry and exit of ligands. The AgmNAT-R138A-S171A structures revealed the similar results to that from Dat-D46A. Therefore, the role of this conserved salt bridge may be a structural switch, which is triggered by cofactor binding, then facilitates the formation of the substrate binding pocket and catalytic site.

    Chapter 1. Introduction 1 1.1. Overview of the General control non-repressible 5 (GCN5) related N-acetyltransferase (GNAT) superfamily 1 1.2. Arylalkylamine N-acetyltransferase (AANAT) 2 1.2.1. The functions of AANATs 2 1.2.2. The structures of AANATs 3 1.2.3. The chemical mechanism and catalytic cycle of AANATs 4 1.2.4. AgmNAT 5 1.3. Conformational change during catalytic cycle 6 1.4. Aim of this study 7 Tables and Figures of Chapter 1 8 Figure 1.1. Topology of GNATs superfamily 8 Figure 1.2. The complex structure of Dat 9 Figure 1.3. Comparison of AANATs with known structures 10 Figure 1.4. The proposed catalytic cycle of Dat 11 Figure 1.5. Comparison of substrate entrance of Dat and AgmNAT 12 Figure 1.6. Comparison of AANAT in different stages of catalytic cycle 13 Figure 1.7. Detail changes of catalytic site in DmDat 14 Figure 1.8. Detail changes of substrate binding tunnel in DmDat 15 Figure 1.9. No large changes of critical residues in DmAgmNAT 16 Figure 1.10. The salt bridge in AANATs of different species 17 Chapter 2. Materials and Methods 18 2.1. Materials 18 2.2. Production of recombinant AgmNAT and its mutants 19 2.2.1. Construction of the expression plasmids 19 2.2.2. Expression and purification 20 2.3. Production and purification of Dat and its mutants 21 2.4. Quantification of protein concentration 24 2.5. Protein electrophoresis 24 2.6. Circular dichroism (CD) 25 2.7. Acetyltransferase activity assay 25 2.8. Isothermal titration calorimetry (ITC). 26 2.8. Crystallization and structure determination 27 2.8.1. AgmNAT-WT and its mutants 27 2.8.2. The salt bridge mutants of Dat 28 2.8.3. Data collection and process 28 Tables and Figures of Chapter 2 30 Table 2.1. Oligonucleotides primers for constructing mutants of AgmNAT 30 Table 2.2. The mutagenesis reaction compositions and thermocycling conditions 31 Table 2.3. Theoretical molecular weights and extinction coefficient of AgmNAT and its mutants. 32 Table 2.4. The reaction compositions of DTNB assay for AgmNAT and its mutants. 33 Table 2.5. The reaction compositions of DTNB assay for Dat and its mutants 34 Figure 2.1. Flow chart of AgmNAT expression and purification 35 Figure 2.2. Flow chart of Dat expression and purification 36 Chapter 3. Results and Discussion 37 3.1. Construction and production of mutants of the conserved salt bridge 37 3.2. The enzyme activity 37 3.2.1. The enzyme activity of Dat and its mutants 37 3.3.2. The enzyme activity of AgmNAT and its mutants 38 3.2.3. The role of the conservatively formed salt bridge in catalyzing N-acetylation 38 3.3. Cofactor binding ability and substrate binding ability 39 3.3.1. The binding ability of Dat and its mutants 39 3.3.2. The binding ability of AgmNAT and its mutants 40 3.3.3. The role of the conservatively formed salt bridge in cofactor binding and substrate binding 41 3.4. Structure-based Analyses 42 3.4.1. Structural analyses of Dat-D46A 42 3.4.2. Structural analyses of AgmNAT-R138A-S171A 44 3.4.3. Structural analyses of AgmNAT-WT complex 46 3.5. Comparison of Dat, AgmNAT, and their mutants 47 Tables and Figures of Chapter 3 50 Table 3.1. Kinetic parameters for Dat, AgmNAT and their mutants 50 Table 3.2. ITC study for ligands binding of Dat, AgmNAT and their mutants 51 Table 3.3. Crystallization condition of Dat and its mutants 52 Table 3.4. Crystallization condition of AgmNAT and its mutants 53 Table 3.5. Data collection and refinement statistics 54 Figure 3.1. The CD spectra of Dat, AgmNAT and their mutants 55 Figure 3.2. Enzyme activity of Dat, AgmNAT and their mutants 56 Figure 3.3. The ligands binding tests of Dat and its mutants by ITC 57 Figure 3.4. The substrate binding tests of Dat and its mutants by ITC 58 Figure 3.5. The ligands binding tests of AgmNAT and its mutants by ITC 59 Figure 3.6. Identification of CoA only in Dat-D46A from ternary cocrystallization 60 Figure 3.7. Structural analyses of Dat-D46A 61 Figure 3.8. The change of substrate binding tunnel in Dat proteins 62 Figure 3.9. Comparison of the structure of AgmNAT-R138A-S171A complex 63 Figure 3.10. Comparison of AgmNAT-R138A-S171A and AgmNAT-S171A 64 Figure 3.11. Comparison of the structure of AgmNAT-WT complex 65 Figure 3.12. Comparison of AgmNAT-WT and AgmNAT-S171A 66 Chapter 4. Conclusion 67 Appendix 69 Appendix I. Production of Dat, AgmNAT and their mutants 69 Appendix II. The crystallization tests 69 Appendix Figure 1. The results of site directed mutagenesis 70 Appendix Figure 2. Expression and purification results 72 Appendix Table 1. Crystallization conditions and results of Dat, AgmNAT and their mutants 73 Reference 76

    1. Salah Ud-Din, A.I., Tikhomirova, A. & Roujeinikova, A. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT). Int J Mol Sci 17(2016).
    2. Farazi, T.A., Manchester, J.K. & Gordon, J.I. Transient-State Kinetic Analysis of Saccharomyces cerevisiae MyristoylCoA:Protein N-Myristoyltransferase Reveals that a Step after Chemical Transformation Is Rate Limiting. Biochemistry 39, 15807-15816 (2000).
    3. Vetting, M.W., Errey, J.C. & Blanchard, J.S. Rv0802c from Mycobacterium tuberculosis: the first structure of a succinyltransferase with the GNAT fold. Acta crystallographica. Section F, Structural biology and crystallization communications 64, 978-985 (2008).
    4. Krtenic, B., Drazic, A., Arnesen, T. & Reuter, N. Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. 2020.05.28.120881 (2020).
    5. Wolf, E. et al. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell 94, 439-49 (1998).
    6. Dutnall, R.N., Tafrov, S.T., Sternglanz, R. & Ramakrishnan, V. Structure of the Histone Acetyltransferase Hat1: A Paradigm for the GCN5-Related N-acetyltransferase Superfamily. Cell 94, 427-438 (1998).
    7. Dyda, F., Klein, D.C. & Hickman, A.B. GCN5-Related N-Acetyltransferases: A Structural Overview. Annual Review of Biophysics and Biomolecular Structure 29, 81-103 (2000).
    8. Vetting, M.W. et al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 433, 212-26 (2005).
    9. Ganguly, S., Coon, S.L. & Klein, D.C. Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell and tissue research 309, 127-137 (2002).
    10. Hardeland, R. & Poeggeler, B. Non‐vertebrate melatonin. Journal of pineal research 34, 233-241 (2003).
    11. SCHOMERUS, C. & KORF, H.W. Mechanisms regulating melatonin synthesis in the mammalian pineal organ. Annals of the New York Academy of Sciences 1057, 372-383 (2005).
    12. Reiter, R.J. The pineal gland and melatonin in relation to aging: a summary of the theories and of the data. Experimental gerontology 30, 199-212 (1995).
    13. Hickman, A.B., Klein, D.C. & Dyda, F. Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 Å resolution suggests a catalytic mechanism. Molecular cell 3, 23-32 (1999).
    14. Klein, D.C. Arylalkylamine N-acetyltransferase:“the Timezyme”. Journal of biological chemistry 282, 4233-4237 (2007).
    15. Hintermann, E., Grieder, N.C., Amherd, R., Brodbeck, D. & Meyer, U.A. Cloning of an arylalkylamine N-acetyltransferase (aaNAT1) from Drosophila melanogaster expressed in the nervous system and the gut. Proceedings of the National Academy of Sciences of the United States of America 93, 12315-12320 (1996).
    16. Ahmed-Braimah, Y.H. & Sweigart, A.L. A single gene causes an interspecific difference in pigmentation in Drosophila. Genetics 200, 331-342 (2015).
    17. Andersen, S.O. Insect cuticular sclerotization: a review. Insect Biochem Mol Biol 40, 166-78 (2010).
    18. Klein, D.C. Arylalkylamine N-acetyltransferase: "the timezyme". Journal of Biological Chemistry 282, 4233-4237 (2007).
    19. Ganguly, S., Coon, S.L. & Klein, D.C. Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell Tissue Res 309, 127-37 (2002).
    20. Dempsey, D.R. et al. Mechanistic and structural analysis of Drosophila melanogaster arylalkylamine N-acetyltransferases. Biochemistry 53, 7777-93 (2014).
    21. Han, Q., Robinson, H., Ding, H., Christensen, B.M. & Li, J. Evolution of insect arylalkylamine N-acetyltransferases: structural evidence from the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 109, 11669-74 (2012).
    22. Brodbeck, D. et al. Molecular and biochemical characterization of the aaNAT1 (Dat) locus in Drosophila melanogaster: Differential expression of two gene products. DNA and Cell Biology 17, 621-633 (1998).
    23. Maranda, B. & Hodgetts, R. Characterization of Dopamine Acetyltransferase in Drosophila-Melanogaster. Insect Biochemistry 7, 33-43 (1977).
    24. Hintermann, E., Jeno, P. & Meyer, U.A. Isolation and Characterization of an Arylalkylamine N-Acetyltransferase from Drosophila-Melanogaster. Febs Letters 375, 148-150 (1995).
    25. Noh, M.Y., Koo, B., Kramer, K.J., Muthukrishnan, S. & Arakane, Y. Arylalkylamine N-acetyltransferase 1 gene (TcAANAT1) is required for cuticle morphology and pigmentation of the adult red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology 79, 119-129 (2016).
    26. Long, Y.H., Li, J.R., Zhao, T.F., Li, G.N. & Zhu, Y. A New Arylalkylamine N-Acetyltransferase in Silkworm (Bombyx mori) Affects Integument Pigmentation. Applied Biochemistry and Biotechnology 175, 3447-3457 (2015).
    27. Dempsey, D.R. et al. Structural and Mechanistic Analysis of Drosophila melanogaster Agmatine N-Acetyltransferase, an Enzyme that Catalyzes the Formation of N-Acetylagmatine. Sci Rep 7, 13432 (2017).
    28. Guan, H. et al. Identification of aaNAT5b as a spermine N-acetyltransferase in the mosquito, Aedes aegypti. Plos One 13(2018).
    29. Hickman, A.B., Klein, D.C. & Dyda, F. Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism. Mol Cell 3, 23-32 (1999).
    30. Cheng, K.C., Liao, J.N. & Lyu, P.C. Crystal structure of the dopamine N-acetyltransferase-acetyl-CoA complex provides insights into the catalytic mechanism. Biochem J 446, 395-404 (2012).
    31. Wu, C.Y. et al. An essential role of acetyl coenzyme A in the catalytic cycle of insect arylalkylamine N-acetyltransferase. Commun Biol 3, 441 (2020).
    32. Hickman, A.B., Namboodiri, M.A.A., Klein, D.C. & Dyda, F. The structural basis of ordered substrate binding by serotonin N-acetyltransferase: Enzyme complex at 1.8 angstrom resolution with a bisubstrate analog. Cell 97, 361-369 (1999).
    33. De Angelis, J., Gastel, J., Klein, D.C. & Cole, P.A. Kinetic analysis of the catalytic mechanism of serotonin N-acetyltransferase (EC 2.3.1.87). J Biol Chem 273, 3045-50 (1998).
    34. Cheng, K.C., Liao, J.N. & Lyu, P.C. Crystal structure of the dopamine N-acetyltransferase-acetyl-CoA complex provides insights into the catalytic mechanism. Biochemical Journal 446, 395-404 (2012).
    35. 陳芝靜. 國立清華大學 (2020).
    36. Aboalroub, A.A. et al. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase. Plos One 12(2017).
    37. Ellman, G.L. Tissue sulfhydryl groups. Arch Biochem Biophys 82, 70-7 (1959).
    38. Collier, H.B. Letter: A note on the molar absorptivity of reduced Ellman's reagent, 3-carboxylato-4-nitrothiophenolate. Anal Biochem 56, 310-1 (1973).
    39. Eyer, P. et al. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal Biochem 312, 224-7 (2003).
    40. Velazquez-Campoy, A., Leavitt, S.A. & Freire, E. Characterization of protein-protein interactions by isothermal titration calorimetry. Methods Mol Biol 261, 35-54 (2004).
    41. Pierce, M.M., Raman, C.S. & Nall, B.T. Isothermal titration calorimetry of protein-protein interactions. Methods 19, 213-21 (1999).
    42. 吳竹雅. 國立清華大學 (2020).
    43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-26 (1997).
    44. Powell, H.R. X-ray data processing. Biosci Rep 37(2017).
    45. Adams, P.D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94-106 (2011).
    46. DeLano, W. The PyMOL Molecular Graphics System. DeLano Scientific; San Carlos, CA, USA: 2002. (2002).
    47. Hegde, S.S., Chandler, J., Vetting, M.W., Yu, M. & Blanchard, J.S. Mechanistic and structural analysis of human spermidine/spermine N1-acetyltransferase. Biochemistry 46, 7187-95 (2007).
    48. 楊伊琛. 國立清華大學 (2016).

    QR CODE