研究生: |
李玠樺 Lee, Jie-Hua |
---|---|
論文名稱: |
自解離型二氫葉酸還原酶螢光增益探針 Self-Immolative Turn-On Fluorescent Probes for the Rapid Detection of Dihydrofolate Reductase |
指導教授: |
陳貴通
Tan, Kui-Thong |
口試委員: |
吳淑褓
Wu, Shu-Pao 王聖凱 Wang, Sheng-Kai |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 二氫葉酸還原酶 、螢光探針 、自解離化學 、開關型探針 、葉酸 、單炭代謝 |
外文關鍵詞: | DHFR, fluorescent probe, self-immolative, on-off, Folate, one-carbon metabolism |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
葉酸代謝對DNA/RNA的轉錄、轉譯有著巨大的影響,也因此跟各種腫瘤細胞的發展有關。葉酸代謝需透過葉酸結合蛋白來輔助。在許多惡性腫瘤組織病例中,葉酸結合蛋白的表達量與惡性腫瘤發生的機率呈現正相關。為了更清楚的研究其關係,葉酸結合蛋白的偵測及檢驗是個必備的工具。目前,發展出一種快速且具良好專一性及偵測能力的葉酸結合蛋白偵測方法依然是個大挑戰。在本論文中,我們發展出以二氟苯酯作為反應端的自解離探針用於偵測以及分析葉酸結合蛋白。此探針在與DHFR反應後最高可以產生將近180倍的螢光增益效果。在基礎生物科學研究、藥物開發以及臨床醫學診斷的領域中,我們相信此新穎的螢光探針設計將是一個可以應用在葉酸結合蛋白偵測上的重要工具。
The folate metabolisms have a great influence on the transcription, translation and repair of DNA/RNA. At present, the biological relationship between folates receptors and cancer risk remains uncertain, as various studies have demonstrated positive, negative, and neutral associations. To date, analytical method that can provide rapid, selective and sensitive detection of folate-binding proteins remains challenging to design. In this thesis, we show that fluorescent turn-on chemical probe based on a difluorophenyl hexanoate self-immolative linker can be a powerful approach to analyze folate-binding proteins in complex biological medium. The probe exhibits dramatic fluorescent enhancement of around 180-fold upon reaction with dihydrofolate reductase (DHFR). We believed that our novel probe design can be a powerful tool to analyze folate-binding proteins which is an important biological target in fundamental biological researches, drug discovery, and medical diagnosis.
1. Lan, X.; Field, M. S.; Stover, P. J., Cell cycle regulation of folate-mediated one- carbon metabolism. Wiley Interdiscip Rev. Syst. Biol. Med. 2018, 10 (6), e1426.
2. Obeid, R.; Herrmann, W., The emerging role of unmetabolized folic acid in human diseases: myth or reality? Curr. Drug Metab. 2012, 13 (8), 1184-95.
3. Sanderson, S. M.; Gao, X.; Dai, Z.; Locasale, J. W., Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat. Rev. Cancer 2019, 19 (11), 625-637.
4. Smith, S. B.; Ganapathy, P. S.; Bozard, R. B.; Ganapathy, V., Chapter 35 - Folate Transport in Retina and Consequences on Retinal Structure and Function of Hyperhomocysteinemia. In Handbook of Nutrition, Diet and the Eye, Preedy, V. R., Ed. Academic Press: San Diego, 2014; pp 349-359.
5. Cheung, A.; Bax, H. J.; Josephs, D. H.; Ilieva, K. M.; Pellizzari, G.; Opzoomer, J.; Bloomfield, J.; Fittall, M.; Grigoriadis, A.; Figini, M.; Canevari, S.; Spicer, J. F.; Tutt, A. N.; Karagiannis, S. N., Targeting folate receptor alpha for cancer treatment. Oncotarget 2016, 7 (32), 52553-52574.
6. Kelemen, L. E., The role of folate receptor α in cancer development, progression and treatment: Cause, consequence or innocent bystander? Int. J. Cancer 2006, 119 (2), 243-250.
7. Ross, J. F.; Chaudhuri, P. K.; Ratnam, M., Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 1994, 73 (9), 2432-2443.
8. Weitman, S. D.; Lark, R. H.; Coney, L. R.; Fort, D. W.; Frasca, V.; Zurawski, V. R., Jr.; Kamen, B. A., Distribution of the Folate Receptor GP38 in Normal and
66
Malignant Cell Lines and Tissues. Cancer Res. 1992, 52 (12), 3396-3401.
9. Bueno, R.; Appasani, K.; Mercer, H.; Lester, S.; Sugarbaker, D., The α folate
receptor is highly activated in malignant pleural mesothelioma. J. Thorac.
Cardiovasc. Surg. 2001, 121 (2), 225-233.
10. Zhou, C.-j.; Wang, S.-h.; Zhou, Y.; Rong, P.-f.; Chen, Z.-z.; Liu, J.-y.; Zhou, J.-
d., Folate-conjugated Fe3O4 nanoparticles for in vivo tumor labeling. Trans.
Nonferrous Met. Soc. China 2013, 23 (7), 2079-2084.
11. Holm, J. A. N.; Hansen, S. I.; HØIer-Madsen, M.; HelkjÆR, P.-E.; Bzorek, M.,
Folate receptor in malignant effusions of ovarian carcinoma. APMIS 1995, 103
(7-8), 663-670.
12. Toffoli, G.; Cernigoi, C.; Russo, A.; Gallo, A.; Bagnoli, M.; Boiocchi, M.,
Overexpression of folate binding protein in ovarian cancers. Int. J. Cancer
1997, 74 (2), 193-198.
13. Sun, L.; Wu, Q.; Peng, F.; Liu, L.; Gong, C., Strategies of polymeric
nanoparticles for enhanced internalization in cancer therapy. Colloids Surf. B
2015, 135, 56-72.
14. Matherly, L. H.; Hou, Z.; Deng, Y., Human reduced folate carrier: translation of
basic biology to cancer etiology and therapy. Cancer Metastasis Rev. 2007, 26
(1), 111-28.
15. Hou, Z.; Matherly, L. H., Biology of the major facilitative folate transporters
SLC19A1 and SLC46A1. Curr. Top. Membr. 2014, 73, 175-204.
16. Desmoulin, S. K.; Hou, Z.; Gangjee, A.; Matherly, L. H., The human proton-
coupled folate transporter: Biology and therapeutic applications to cancer.
Cancer Biol. Ther. 2012, 13 (14), 1355-73.
17. Whetstine, J. R.; Flatley, R. M.; Matherly, L. H., The human reduced folate
67
carrier gene is ubiquitously and differentially expressed in normal human tissues: identification of seven non-coding exons and characterization of a novel promoter. Biochem. J. 2002, 367 (Pt 3), 629-640.
18. Al-Shakfa, F.; Dulucq, S.; Brukner, I.; Milacic, I.; Ansari, M.; Beaulieu, P.; Moghrabi, A.; Laverdière, C.; Sallan, S. E.; Silverman, L. B.; Neuberg, D.; Kutok, J. L.; Sinnett, D.; Krajinovic, M., DNA variants in region for noncoding interfering transcript of dihydrofolate reductase gene and outcome in childhood acute lymphoblastic leukemia. Clin. Cancer Res. 2009, 15 (22), 6931-8.
19. Huennekens, F. M., In search of dihydrofolate reductase. Protein Sci. 1996, 5 (6), 1201-1208.
20. Schnell, J. R.; Dyson, H. J.; Wright, P. E., Structure, Dynamics, and Catalytic Function of Dihydrofolate Reductase. Annu. Rev. Biophys. Biomol. Struct. 2004, 33 (1), 119-140.
21. Fierke, C. A.; Johnson, K. A.; Benkovic, S. J., Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochem. 1987, 26 (13), 4085-92.
22. Antikainen, N. M.; Smiley, R. D.; Benkovic, S. J.; Hammes, G. G., Conformation Coupled Enzyme Catalysis: Single-Molecule and Transient Kinetics Investigation of Dihydrofolate Reductase. Biochem. 2005, 44 (51), 16835-16843.
23. Sawaya, M. R.; Kraut, J., Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochem. 1997, 36 (3), 586-603.
24. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science
68
1989, 246 (4926), 64.
25. Karas, M.; Bachmann, D.; Hillenkamp, F., Influence of the wavelength in high-
irradiance ultraviolet laser desorption mass spectrometry of organic molecules.
Anal. Chem. 1985, 57 (14), 2935-2939.
26. Anderson, J. D.; Johansson, H. J.; Graham, C. S.; Vesterlund, M.; Pham, M. T.;
Bramlett, C. S.; Montgomery, E. N.; Mellema, M. S.; Bardini, R. L.; Contreras, Z.; Hoon, M.; Bauer, G.; Fink, K. D.; Fury, B.; Hendrix, K. J.; Chedin, F.; El- Andaloussi, S.; Hwang, B.; Mulligan, M. S.; Lehtiö, J.; Nolta, J. A., Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling. stem cells 2016, 34 (3), 601-613.
27. Thiede, B.; Höhenwarter, W.; Krah, A.; Mattow, J.; Schmid, M.; Schmidt, F.; Jungblut, P. R., Peptide mass fingerprinting. Methods 2005, 35 (3), 237-247.
28. Mahmood, T.; Yang, P. C., Western blot: technique, theory, and trouble shooting. N. Am. J. Med. Sci. 2012, 4 (9), 429-34.
29. Burnette, W. N., Western blotting: remembrance of things past. Methods Mol. Biol. 2015, 1312, 9-12.
30. He, J., Chapter 5.1 - Practical Guide to ELISA Development. In The Immunoassay Handbook (Fourth Edition), Wild, D., Ed. Elsevier: Oxford, 2013; pp 381-393.
31. Vashist, S. K.; Luong, J. H. T., Chapter 5 - Enzyme-Linked Immunoassays. In Handbook of Immunoassay Technologies, Vashist, S. K.; Luong, J. H. T., Eds. Academic Press: 2018; pp 97-127.
32. Chen, C.-Y.; Chang, Y.-L.; Shih, J.-Y.; Lin, J.-W.; Chen, K.-Y.; Yang, C.-H.; Yu, C.-J.; Yang, P.-C., Thymidylate synthase and dihydrofolate reductase expression
69
in non-small cell lung carcinoma: The association with treatment efficacy of
pemetrexed. Lung Cancer 2011, 74 (1), 132-138.
33. Aiso, K.; Nozaki, T.; Shimoda, M.; Kokue, E., Assay of Dihydrofolate
Reductase Activity by Monitoring Tetrahydrofolate Using High-Performance Liquid Chromatography with Electrochemical Detection. Anal. Biochem. 1999, 272 (2), 143-148.
34. Li, X.; Gao, X.; Shi, W.; Ma, H., Design Strategies for Water-Soluble Small Molecular Chromogenic and Fluorogenic Probes. Chem. Rev. 2014, 114 (1), 590-659.
35. Lavis, L. D.; Chao, T.-Y.; Raines, R. T., Synthesis and utility of fluorogenic acetoxymethyl ethers. Chem. Science 2011, 2 (3), 521-530.
36. Kim, Y.; Choi, Y.; Weissleder, R.; Tung, C.-H., Membrane permeable esterase- activated fluorescent imaging probe. Bioorg. Med. Chem. Lett. 2007, 17 (18), 5054-5057.
37. Sakabe, M.; Asanuma, D.; Kamiya, M.; Iwatate, R. J.; Hanaoka, K.; Terai, T.; Nagano, T.; Urano, Y., Rational Design of Highly Sensitive Fluorescence Probes for Protease and Glycosidase Based on Precisely Controlled Spirocyclization. J. Am. Chem. Soc. 2013, 135 (1), 409-414.
38. Mittoo, S.; Sundstrom, L. E.; Bradley, M., Synthesis and evaluation of fluorescent probes for the detection of calpain activity. Anal. Biochem. 2003, 319 (2), 234-238.
39. Kamiya, M.; Asanuma, D.; Kuranaga, E.; Takeishi, A.; Sakabe, M.; Miura, M.; Nagano, T.; Urano, Y., β-Galactosidase Fluorescence Probe with Improved Cellular Accumulation Based on a Spirocyclized Rhodol Scaffold. J. Am. Chem. Soc. 2011, 133 (33), 12960-12963.
70
40. Broussard, J. A.; Rappaz, B.; Webb, D. J.; Brown, C. M., Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat. Protoc. 2013, 8 (2), 265-281.
41. González-Vera, J. A., Probing the kinome in real time with fluorescent peptides. Chem. Soc. Rev. 2012, 41 (5), 1652-64.
42. Shults, M. D.; Imperiali, B., Versatile Fluorescence Probes of Protein Kinase Activity. J. Am. Chem. Soc. 2003, 125 (47), 14248-14249.
43. Veldhuyzen, W. F.; Nguyen, Q.; McMaster, G.; Lawrence, D. S., A Light- Activated Probe of Intracellular Protein Kinase Activity. J. Am. Chem. Soc. 2003, 125 (44), 13358-13359.
44. Li, Z.; Li, X.; Gao, X.; Zhang, Y.; Shi, W.; Ma, H., Nitroreductase Detection and Hypoxic Tumor Cell Imaging by a Designed Sensitive and Selective Fluorescent Probe, 7-[(5-Nitrofuran-2-yl)methoxy]-3H-phenoxazin-3-one. Anal. Chem. 2013, 85 (8), 3926-3932.
45. Xu, K.; Wang, F.; Pan, X.; Liu, R.; Ma, J.; Kong, F.; Tang, B., High selectivity imaging of nitroreductase using a near-infrared fluorescence probe in hypoxic tumor. Chem. Comm. 2013, 49 (25), 2554-2556.
46. Zlokarnik, G.; Negulescu, P. A.; Knapp, T. E.; Mere, L.; Burres, N.; Feng, L.; Whitney, M.; Roemer, K.; Tsien, R. Y., Quantitation of Transcription and Clonal Selection of Single Living Cells with β-Lactamase as Reporter. Science 1998, 279 (5347), 84.
47. Hood, L.; Rowen, L., The Human Genome Project: big science transforms biology and medicine. Genome Med. 2013, 5 (9), 79.
48. Baba, R.; Hori, Y.; Mizukami, S.; Kikuchi, K., Development of a Fluorogenic Probe with a Transesterification Switch for Detection of Histone Deacetylase
71
Activity. J. Am. Chem. Soc. 2012, 134 (35), 14310-14313.
49. Wegener, D.; Wirsching, F.; Riester, D.; Schwienhorst, A., A Fluorogenic
Histone Deacetylase Assay Well Suited for High-Throughput Activity
Screening. Chem. Biol. 2003, 10 (1), 61-68.
50. Han, J.; Burgess, K., Fluorescent indicators for intracellular pH. Chem. Rev.
2010, 110 (5), 2709-28.
51. Wu, D.; Chen, L.; Lee, W.; Ko, G.; Yin, J.; Yoon, J., Recent progress in the
development of organic dye based near-infrared fluorescence probes for metal
ions. Coord. Chem. Rev. 2018, 354, 74-97.
52. Lippert, A. R.; Van de Bittner, G. C.; Chang, C. J., Boronate oxidation as a
bioorthogonal reaction approach for studying the chemistry of hydrogen
peroxide in living systems. Acc. Chem. Res. 2011, 44 (9), 793-804.
53. Veal, E. A.; Day, A. M.; Morgan, B. A., Hydrogen peroxide sensing and
signaling. Mol. Cell 2007, 26 (1), 1-14.
54. Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J., A Selective, Cell-
Permeable Optical Probe for Hydrogen Peroxide in Living Cells. J. Am. Chem.
Soc. 2004, 126 (47), 15392-15393.
55. Lippert, A. R.; New, E. J.; Chang, C. J., Reaction-Based Fluorescent Probes for
Selective Imaging of Hydrogen Sulfide in Living Cells. J. Am. Chem. Soc. 2011,
133 (26), 10078-10080.
56. Chan, J.; Dodani, S. C.; Chang, C. J., Reaction-based small-molecule
fluorescent probes for chemoselective bioimaging. Nat. Chem. 2012, 4 (12),
973-984.
57. Chyan, W.; Raines, R. T., Enzyme-Activated Fluorogenic Probes for Live-Cell
and in Vivo Imaging. ACS Chem. Biol. 2018, 13 (7), 1810-1823. 72
58. He, X.; Xu, Y.; Shi, W.; Ma, H., Ultrasensitive Detection of Aminopeptidase N Activity in Urine and Cells with a Ratiometric Fluorescence Probe. Anal. Chem. 2017, 89 (5), 3217-3221.
59. Hu, Y.; Li, H.; Shi, W.; Ma, H., Ratiometric Fluorescent Probe for Imaging of Pantetheinase in Living Cells. Anal. Chem. 2017, 89 (20), 11107-11112.
60. Li, H.; Li, X.; Wu, X.; Shi, W.; Ma, H., Observation of the Generation of ONOO– in Mitochondria under Various Stimuli with a Sensitive Fluorescence Probe. Anal. Chem. 2017, 89 (10), 5519-5525.
61. Li, L.; Li, Z.; Shi, W.; Li, X.; Ma, H., Sensitive and Selective Near-Infrared Fluorescent Off–On Probe and Its Application to Imaging Different Levels of β- Lactamase in Staphylococcus aureus. Anal. Chem. 2014, 86 (12), 6115-6120.
62. Shang, J.; Shi, W.; Li, X.; Ma, H., Water-Soluble Near-Infrared Fluorescent Probes for Specific Detection of Monoamine Oxidase A in Living Biosystems. Anal. Chem. 2021, 93 (9), 4285-4290.
63. Wu, X.; Li, L.; Shi, W.; Gong, Q.; Li, X.; Ma, H., Sensitive and Selective Ratiometric Fluorescence Probes for Detection of Intracellular Endogenous Monoamine Oxidase A. Anal. Chem. 2016, 88 (2), 1440-1446.
64. Broussard, J. A.; Green, K. J., Research Techniques Made Simple: Methodology and Applications of Förster Resonance Energy Transfer (FRET) Microscopy. J. Investig. Dermatol. 2017, 137 (11), e185-e191.
65. Zhang, X.; Hu, Y.; Yang, X.; Tang, Y.; Han, S.; Kang, A.; Deng, H.; Chi, Y.; Zhu, D.; Lu, Y., FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens. Bioelectron. 2019, 138, 111314.
66. Beckman, J. S., Oxidative Damage and Tyrosine Nitration from Peroxynitrite. Chem. Res. Toxicol. 1996, 9 (5), 836-844.
73
67. Koppenol, W. H.; Moreno, J. J.; Pryor, W. A.; Ischiropoulos, H.; Beckman, J. S., Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 1992, 5 (6), 834-842.
68. Radi, R., Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of Functional Effects. Acc. Chem. Res. 2013, 46 (2), 550-559.
69. Pacher, P.; Beckman, J. S.; Liaudet, L., Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87 (1), 315-424.
70. Szabó, C.; Ischiropoulos, H.; Radi, R., Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007, 6 (8), 662-680.
71. Jia, X.; Chen, Q.; Yang, Y.; Tang, Y.; Wang, R.; Xu, Y.; Zhu, W.; Qian, X., FRET-Based Mito-Specific Fluorescent Probe for Ratiometric Detection and Imaging of Endogenous Peroxynitrite: Dyad of Cy3 and Cy5. J. Am. Chem. Soc. 2016, 138 (34), 10778-10781.
72. Peroza, E. A.; Ewald, J. C.; Parakkal, G.; Skotheim, J. M.; Zamboni, N., A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics. Anal. Biochem. 2015, 474, 1-7.
73. Hu, X.; Hai, Z.; Wu, C.; Zhan, W.; Liang, G., A Golgi-Targeting and Dual-Color “Turn-On” Probe for Spatially Precise Imaging of Furin. Anal. Biochem. 2021, 93 (3), 1636-1642.
74. Schulenburg, C.; Faccio, G.; Jankowska, D.; Maniura-Weber, K.; Richter, M., A FRET-based biosensor for the detection of neutrophil elastase. Analyst 2016, 141 (5), 1645-1648.
75. Zadran, S.; Standley, S.; Wong, K.; Otiniano, E.; Amighi, A.; Baudry, M., Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing
74
cellular dynamics and bioenergetics. App. Microbiol. Biotechnol. 2012, 96 (4),
895-902.
76. Lee, J.; Samson, A. A. S.; Song, J. M., Peptide substrate-based inkjet printing
high-throughput MMP-9 anticancer assay using fluorescence resonance energy
transfer (FRET). Sens. Actuators B Chem.2018, 256, 1093-1099.
77. Escudero, D., Revising Intramolecular Photoinduced Electron Transfer (PET)
from First-Principles. Acc.Chem. Res. 2016, 49 (9), 1816-1824.
78. Zhang, W.; Ma, Z.; Du, L.; Li, M., Design strategy for photoinduced electron
transfer-based small-molecule fluorescent probes of biomacromolecules.
Analyst 2014, 139 (11), 2641-2649.
79. Yu, F.; Li, P.; Li, G.; Zhao, G.; Chu, T.; Han, K., A Near-IR Reversible
Fluorescent Probe Modulated by Selenium for Monitoring Peroxynitrite and
Imaging in Living Cells. J. Am. Chem. Soc. 2011, 133 (29), 11030-11033.
80. Li, P.; Duan, X.; Chen, Z.; Liu, Y.; Xie, T.; Fang, L.; Li, X.; Yin, M.; Tang, B., A near-infrared fluorescent probe for detecting copper(ii) with high selectivity and
sensitivity and its biological imaging applications. Chem. Comm. 2011, 47 (27),
7755-7757.
81. Urano, Y.; Kamiya, M.; Kanda, K.; Ueno, T.; Hirose, K.; Nagano, T., Evolution
of fluorescein as a platform for finely tunable fluorescence probes. J. Am.
Chem. Soc. 2005, 127 (13), 4888-94.
82. Fujikawa, Y.; Urano, Y.; Komatsu, T.; Hanaoka, K.; Kojima, H.; Terai, T.; Inoue,
H.; Nagano, T., Design and synthesis of highly sensitive fluorogenic substrates for glutathione S-transferase and application for activity imaging in living cells. J. Am. Chem. Soc. 2008, 130 (44), 14533-43.
83. Kamiya, M.; Urano, Y.; Ebata, N.; Yamamoto, M.; Kosuge, J.; Nagano, T., 75
Extension of the applicable range of fluorescein: a fluorescein-based probe for
Western blot analysis. Angew. Chem. Int. Ed. Engl. 2005, 44 (34), 5439-41.
84. Nakamura, N.; Uchinomiya, S.; Inoue, K.; Ojida, A., Trimethyl-Substituted
Carbamate as a Versatile Self-Immolative Linker for Fluorescence Detection of
Enzyme Reactions. Molecules 2020, 25 (9).
85. Yan, J.; Lee, S.; Zhang, A.; Yoon, J., Self-immolative colorimetric, fluorescent
and chemiluminescent chemosensors. Chem. Soc. Rev. 2018, 47 (18), 6900-
6916.
86. Huang, H.-Y.; Fan, S.-Y.; Chang, E.-H.; Lam, C. H.; Lin, Y.-C.; Lin, X.-H.;
Gupta, N. K.; Tan, K.-T., Self-Immolative Difluorophenyl Ester Linker for Affinity-Based Fluorescence Turn-on Protein Detection. Anal. Chem. 2020, 92 (23), 15463-15471.
87. Takamura, A.; Thuy-Boun, P. S.; Kitamura, S.; Han, Z.; Wolan, D. W., A photoaffinity probe that targets folate-binding proteins. Bioorg. Med. Chem. Lett. 2021, 40, 127903.
88. Waterman-Storer, C., Fluorescent speckle microscopy (FSM) of microtubules and actin in living cells. Current protocols in cell biology / editorial board, Juan S. Bonifacino ... [et al.] 2002, Chapter 4.
89. van Dam, G. M.; Themelis, G.; Crane, L. M. A.; Harlaar, N. J.; Pleijhuis, R. G.; Kelder, W.; Sarantopoulos, A.; de Jong, J. S.; Arts, H. J. G.; van der Zee, A. G. J.; Bart, J.; Low, P. S.; Ntziachristos, V., Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in- human results. Nat. Med. 2011, 17 (10), 1315-1319.
90. Ren, C.; Zhang, J.; Chen, M.; Yang, Z., Self-assembling small molecules for the detection of important analytes. Chem. Soc. Rev. 2014, 43 (21), 7257-7266.
76
91. Mizusawa, K.; Takaoka, Y.; Hamachi, I., Specific Cell Surface Protein Imaging by Extended Self-Assembling Fluorescent Turn-on Nanoprobes. J. Am. Chem. Soc. 2012, 134 (32), 13386-13395.
92. Ni, Y.; Wu, J., Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org. Biomol. Chem. 2014, 12 (23), 3774-3791.
93. Lu, H.; Mack, J.; Yang, Y.; Shen, Z., Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev. 2014, 43 (13), 4778-4823.
94. Ulrich, G.; Ziessel, R.; Harriman, A., The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew. Chem. Int. Ed. Engl. 2008, 47 (7), 1184-201.
95. Loudet, A.; Burgess, K., BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev. 2007, 107 (11), 4891-932.
96. Tian, Z.; Ding, L.; Li, K.; Song, Y.; Dou, T.; Hou, J.; Tian, X.; Feng, L.; Ge, G.; Cui, J., Rational Design of a Long-Wavelength Fluorescent Probe for Highly Selective Sensing of Carboxylesterase 1 in Living Systems. Anal. Chem. 2019, 91 (9), 5638-5645.
97. Jing, C.; Cornish, V. W., A fluorogenic TMP-tag for high signal-to-background intracellular live cell imaging. ACS Chem. Biol. 2013, 8 (8), 1704-12.
98. Matthews, D. A.; Alden, R. A.; Bolin, J. T.; Freer, S. T.; Hamlin, R.; Xuong, N.; Kraut, J.; Poe, M.; Williams, M.; Hoogsteen, K., Dihydrofolate reductase: x-ray structure of the binary complex with methotrexate. Science 1977, 197 (4302), 452-5.
99. Ishida, M.; Watanabe, H.; Takigawa, K.; Kurishita, Y.; Oki, C.; Nakamura, A.; Hamachi, I.; Tsukiji, S., Synthetic self-localizing ligands that control the spatial
77
location of proteins in living cells. J. Am. Chem. Soc. 2013, 135 (34), 12684-9. 100.Takaoka, Y.; Nishikawa, Y.; Hashimoto, Y.; Sasaki, K.; Hamachi, I., Ligand-
directed dibromophenyl benzoate chemistry for rapid and selective acylation of intracellular natural proteins. Chem. Science 2015, 6 (5), 3217-3224.