簡易檢索 / 詳目顯示

研究生: 奧迪拉
Odedra Arjan Viram
論文名稱: 有機金屬釕、鈷應用於烯炔類分子進行分子內環化反應
Cobalt and Ruthenium Complexes Mediated/Catalyzed Intramolecular Cyclization of Enynes
指導教授: 劉瑞雄
Rai-Shung Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 454
中文關鍵詞: CobaltRutheniumCatalyzedCyclizationEnynes
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為三個章節,主要是利用過渡金屬催化或促進烯炔類化合物進行環化反應。
    第一章主要是探討是利用鈷金屬錯合物促進順式環氧烯炔類化合物進行
    環化加成反應。當順式環氧烯炔基化合物和 Co2(CO)8 在充入的一氧化碳可得到三環δ-內酯化合物,在此反應中可能經由 [5+1]/[2+2+1] 或 [5+1]/[2+2] 環化加成反應的過程這兩種過程取決於配位基的結構和反應條件。我們所推測的反應機構包含鈷金屬配位到環狀丙二烯上。本反應除了可以架構含碳的三環化合物,還可以引進含氧、氮等異原子,表示此反應具有不錯的官能基容忍度,這在合成複雜的多環分子上具有極高的應用價值。
    第二章主要是探討研究釕金屬錯合物 TpRuPPh3(CH3CN)2PF6 催化烯二炔類進行親核性加成之芳香化反應,此反應具有極高的位向選擇性,親核性試劑只會加成在多電子的炔基上,且多種溫和的親核性試劑皆可反應,如水、醇類、苯胺、醛類和酯類等,這些親核性試劑則會加成至芳香環上,可應用於不同官能基芳香環衍生物的合成上。此外,我們也發現當苯環上有推電子基時,反應性會增加,從同位素實驗中可以證明其反應機構是經由 ruthenium-π-alkyne 而非釕金屬亞乙烯基。
    第三章主要是探討利用釕金屬錯合物 TpRuPPh3(CH3CN)2PF6 催化烯炔類化合物進行環化反應,而形成環戊二烯類衍生物。此外,當釕金屬錯合物為 TpRuPPh3(CH3CN)2SbF6 在催化 1-alkyl-2-ethynyl benzene 化合物形成1-alkyl-1H-indene時,催化效果比 TpRuPPh3(CH3CN)2PF6 效率更好。此反應的機構經由重氫取代實驗證明包含經由釕金屬亞乙烯基中間物的 [1,5]-sigmatropic 氫轉移。另外,我們也發現當 cis-2-en-4-yn-1-ol 在 TBS 保護下經由釕金屬錯合物 TpRuPPh3(CH3CN)2PF6 催化下亦可得到不錯產率的環戊酮衍生物。


    Arjan Viram Odedra, Ph.D., National Tsing Hua University, June 2006. Cobalt and Ruthenium Complexes Mediated/Catalyzed Intramolecular Cyclization of Enynes. Advisor: Professor Rai-Shung Liu

    Intramolecular cyclizations of enynes mediated/catalyzed by cobalt and ruthenium complexes are described in this dissertation. The thesis is divided into three chapters.
    First chapter presents cobalt mediated double carbonylative cycloaddition of epoxy alkyne with tethered alkyne. In the presence of Co2(CO)8 and CO, cis-epoxyalkynes bearing a tether olefin undergo a tandem [5 + 1]/[2 + 2 + 1] and/or [5 + 1]/[2 + 2]-cycloaddition depending on substrate and condition. In this novel cycloaddition reaction cobalt stitches together cis-epoxy alkyne, CO and olefin in highly stereocontrolled way to synthesize tricyclic -lactones efficiently in a one-pot operation. The reaction mechanism is proposed to involve a cobalt-coordinated cyclic allene species. This new approach is successfully extended to construct various tricyclic carbo- and heterocyclic frameworks that can tolerate suitable oxygen and nitrogen functionalities.
    Second chapter deals with ruthenium catalyzed anionic bergman cyclization of unstrained enediynes. TpRu(PPh3)(CH3CN)2PF6 (10 mol%) catalyst effected the nucleophilic addition of water, alcohols, aniline, acetylacetone, and dimethyl malonate to unfunctionalized enediynes under suitable conditions (100 oC, 12-24 h), and gave functionalized benzene products in good yields. In this novel cyclization, nucleophiles very regioselectively attack the internal C1’-alkyne carbon of enediynes to give benzene derivatives as a single regioisomer. Experiments with methoxy substituents exclude the possible involvement of naphthyl cations as reaction intermediates in the cyclization of (o-ethynylphenyl) alkynes. Deuterium-labeling experiments indicate that the catalytically active species is ruthenium-□-alkyne rather than ruthenium-vinylidene species. This hypothesis is further confirmed by the aromatization of o-(2’-iodoethynyl)phenyl alkynes with alcohols. We propose a nucleophilic addition/insertion mechanism for this nucleophilic aromatization based on a series of experiments.
    Last chapter discusses ruthenium catalyzed cycloisomerization of enenye. TpRuPPh3(CH3CN)2PF6 (10 mol %) catalyzed the cycloisomerization of unactivated cis-3-en-1-ynes and efficiently produces stable cyclopentadiene and related derivatives. TpRuPPh3(CH3CN)2SbF6 catalyzed cycloisomerization of 1-alkyl-2-ethynyl benzene to 1-alkyl-1H-indene in excellent yield whereas TpRuPPh3(CH3CN)2PF6 was inactive. The mechanism of this cyclization is proposed to involve a [1, 5]-sigmatropic hydrogen shift of ruthenium-vinylidene intermediates on the basis of deuterium labeling experiments. TpRuPPh3(CH3CN)2PF6 also catalyzed isomerization of TBS-protected cis-2-en-4-yn-1-ol to afford cyclopentenone derivatives in good yield.

    Contents ABSTRACT CONTENTS LIST OF SCHEMES LIST OF TABLES LIST OF FIGURES LIST OF PUBLICATIONS ABRREVIATIONS iv viii xi xv xvii xviii xix CHAPTER 1: A New Co2(CO)8-Mediated Tandem [5 + 1]/[2 + 2 + 1]-Cycloaddition Reaction: A One-Pot Synthesis of Tricyclic δ-Lactones from cis-Epoxy Ene-ynes 1.1. Introduction and background 1 1.1.1. Importance of Transition Metal Complexes in Organic Synthesis 1 1.1.2. Pauson-Khand Reaction 1 1.1.3. Catalytic Pauson-Khand (CPK) Reaction 3 1.1.4. Replacing Olefin or Alkyne in Pauson-Khand type Reaction 7 1.1.5. Epoxide as Coupling Partner in Metal Mediated or Catalyzed Transformations 8 1.1.6. Construction of Complex Polycyclic Molecules via Cobalt Complex Catalyzed/Mediated Tandem Reaction 12 1.1.7. Objectives 15 1.2. Results and discussion 16 1.2.1 Preparation of Starting Materials 18 1.2.2 Cobalt Mediated [5 + 1]/[2 + 2 + 1] Cycloaddition Reaction 24 1.2.3 Cobalt Mediated [5 + 1]/[2 + 2] Cycloaddition Reaction 27 1.2.4 Structural Determination 28 1.2.5 Study on Trapping Cobalt Stabilized Allene with Diene, Aldehyde, and Alkyne 30 1.2.6 Investigation of Reaction with Catalytic Amount of Cobalt Complex. 32 1.2.7 Plausible Reaction Mechanism of this Novel [5 + 1]/[2 + 2 + 1] and [5 + ]/[2 + 2]-Cycloaddition. 34 1.3. Conclusion 36 1.4. Experimental Section 37 References 58 CHAPTER II: Ruthenium-Catalyzed Aromatization of Enediynes via Highly Regioselective Nucleophilic Additions on a □-Alkyne Functionality; A Useful Method for the Synthesis of Functionalized Benzene Derivatives. 2.1 Introduction and Background 61 2.1.1. Ruthenium Catalyzed Reaction for Organic Synthesis 61 2.1.2. Bergman Cyclization (BC) 66 2.1.3. Metal Mediated BC Through Metal-Chelated Effect 69 2.1.4. Metal Mediated BC via Metal-Vinylidene Intermediates 70 2.1.5. Aromatization of Enediynes via Nucleophilic Addition (Anionic Bergman Cyclization) 72 2.1.6. Properties of TpRuPPh3(CH3CN)2PF6 74 2.1.7. Objectives 75 2.2 Results and discussion 76 2.2.1. Preparation of Starting Materials and Catalyst. 78 2.2.2. Regioselective Alkoxylation and Hydration in the Nucleophilic Aromatization Reaction. 80 2.2.3. Nucleophilic Aromatization of Enediynes using Aniline as Nucleophile. 83 2.2.4. Aromatization of Enediynes via Carbon-Centered Nucleophiles. 84 2.2.5. Structural Effect of Enediynes on Ruthenium Catalyzed Cyclization. 87 2.2.6. Mechanistic Study. 90 2.2.7. Plausible Mechanism of the Ruthenium Catalyzed Nucleophilic Aromatization. 94 2.3 Conclusion 97 2.4 Experimental Section 98 References 118 CHAPTER III: Ruthenium Catalyzed Cycloisomerization of cis-3-En-1-ynes to five Member Carbocycles Through a 1,5-Sigmatropic Hydrogen Shift of Ruthenium-Vinylidene Intermediates 3.1 Introduction and Background 124 3.1.1. 1,5-Hydrogen Shift in cis-1,3-Dienes 124 3.1.2. 1,5-Hydrogen Shift in cis-1-Alkyl-2-vinylcyclopropanes 125 3.1.3. 1,5-Hydrogen Shift in cis-1-Allen-4-enes 126 3.1.4. 1,5-Hydrogen Shift in cis-3-En-1-ynes 127 3.1.5. Metal Vinylidene in Organic Synthesis 128 3.1.6. Objectives 131 3.2 Result and discussion 133 3.2.1. Preparation of Starting Materials 134 3.2.2. Ruthenium Catalyzed Cycloisomerization of cis-3-En-1-ynes 137 3.2.3. Ruthenium Catalyzed Cyclization of 1- Alkyl -2-ethynyl benzene Derivatives 139 3.2.4. Cycloisomerization of tert-Butyldimethylsilyl (TBS) Protected cis-2-En-4-yn-1-ol to Cyclopentenone Derivatives 144 3.2.5. Plausible Mechanism 148 3.3 Conclusion 151 3.4 Experimental Section 152 References 176 X-RAY CRYSTAL DATA AND 1H & 13C SPECTRA 179 List of Schemes Chapter I Scheme 1. Pauson-Khand reaction. 2 Scheme 2. Construction of fused bicyclic systems by Pauson-Khand reaction. 3 Scheme 3. Titanocene complex catalyzed PK reaction. 5 Scheme 4. Rhodium complex catalyzed PK reaction. 6 Scheme 5. Short synthesis of potent antitumor agent (±) Hydroxymethylacylfulvene using allenic PK type cycloaddition reaction. 8 Scheme 6. Hetero- Pauson-Khand reaction. 8 Scheme 7. [3+2]-cycloaddition of epoxides with alkynyltungsten. 9 Scheme 8. Ruthenium catalyzed cyclization of epoxide with tethered alkyne. 10 Scheme 9. Ruthenium catalyzed cyclization of epoxyalkynes. 10 Scheme 10. Cobalt mediated cyclization of epoxyalkynes. 17 Scheme 11. Mechanistic rationalization for the formation of alcohol 2a, 2b and pyran-2-one 3b from epoxide 1a and 1b. 17 Scheme 12. Synthetic scheme for preparation of cis-epoxyalkyne 4 (and 5) . 19 Scheme 13. Synthetic scheme for preparation of cis-epoxyalkyne 6. 20 Scheme 14. Synthetic scheme for preparation of cis-epoxyalkyne 7 (and 8). 20 Scheme 15. Synthetic scheme for preparation of cis-epoxyalkyne 9. 21 Scheme 16. Synthetic scheme for preparation of cis-epoxyalkyne 10. 22 Scheme 17. Synthetic scheme for preparation of cis-epoxyalkyne 12. 23 Scheme 18. Synthetic scheme for preparation of cis-epoxyalkyne 15. 24 Scheme 19. Cobalt-mediated cycloaddition of nitrogen containing cis-epoxyalkynes. 27 Scheme 20. Plausible reaction mechanism. 35 Chapter II Scheme 1. Ruthenium complexes catalyzed hydrogenation of olefins. 63 Scheme 2. Ruthenium complexes catalyzed addition of carboxylic acid to terminal alkynes. 64 Scheme 3. Carbon-Carbon bond formation initiated via ruthenacycle intermediates. 66 Scheme 4. Carbon-Carbon bond formation initiated via π -allylruthenium intermediates. 66 Scheme 5. Bergman Cyclization or Cycloaromatization. 67 Scheme 6. Naturally occurring enediynes Calicheamicin and Cynemicin. 67 Scheme 7. Mechanism of DNA cleavage by calicheamicin. 68 Scheme 8. Myers-Saito cyclization. 68 Scheme 9. BC of bisphosphino enediyne and its metal complexes. 69 Scheme 10. BC of pyridyl aldimino enediyne and its Mg2+ complexes. 70 Scheme 11. Bergman aromatization via ruthenium-vinylidene. 70 Scheme 12. Mechanism of BC mediated by Rh complex. 71 Scheme 13. Anionic Bergman cyclization of synthetic analogue of dynemicin. 72 Scheme 14. Anionic Bergman cyclization. 73 Scheme 15. Ruthenium catalyzed protocol to realize nucleophilic aromatization. 76 Scheme 16. Ruthenium catalyzed hydrative cyclization. 77 Scheme 17. Synthetic scheme for preparation ruthenium catalyst 24. 78 Scheme 18. Synthetic scheme for preparation diyne 25. 79 Scheme 19. Synthetic scheme for preparation diyne 26. 79 Scheme 20. Synthetic scheme for preparation diyne 28. 80 Scheme 21. Synthetic scheme for preparation diyne 39. 88 Scheme 22. Reaction of TpRuPPh3(CH3CN)Cl with endiyne 45. 91 Scheme 23. Nucleophilic aromatization of iodine substituted endiynes. 93 Scheme 24. Plausible mechanism for the ruthenium catalyzed cyclization. 95 Scheme 25. Plausible mechanism for aniline addition. 96 Chapter III Scheme 1. 1,5-hydrogen shift in parent butadiene system. 124 Scheme 2. Synthesis of chiral acetic acid using 1,5-hydrogen shift reaction as key step. 125 Scheme 3. 1,5-hydrogen shift in vinylcyclopropanes. 125 Scheme 4. Substituent effect in 1,5-hydrogen shift of vinylcyclopropanes. 126 Scheme 5. 1,5-Hydrogen shift in vinylallenes. 126 Scheme 6. Synthesis of 9,11-dehydrovitamin D3 analogues via 1,5-hydrogen shift of vinylallene. 127 Scheme 7. 1,5-Hydrogen shift in cis-3-en-1-ynes. 128 Scheme 8. Cycloaromatization of dienynes via ruthenium-vinylidene intermediates. 129 Scheme 9. Ruthenium catalyzed cycloaromatization of dienyl alkynes via 1,2-halo or aryl migration. 129 Scheme 10. Ruthenium catalyzed synthesis of coronene derivatives. 130 Scheme 11. Pentacarbonyltungsten(0) catalyzed cyclization of aromatic enynes. 131 Scheme 12. Ruthenium catalyzed cycloisomerization of cis-3-en-1-ynes. 133 Scheme 13. Ruthenium catalyzed cycloisomerization of 1-ethynyl-3-ols. 133 Scheme 14. Synthetic scheme for preparation enyne 53. 134 Scheme 15. Synthetic scheme for preparation enyne 56. 135 Scheme 16. Synthetic scheme for preparation enyne 57. 136 Scheme 17. Synthetic scheme for preparation enyne 58. 136 Scheme 18. Synthetic scheme for preparation 1-benzyl-2-ethynyl-benzene derivatives. 140 Scheme 19. Synthetic scheme for preparation 5-ethynyl-6-phenethyl-benzo[1,3]dioxole 72. 141 Scheme 20. Synthesis of cyclopentenones through aldol reaction. 144 Scheme 21. Rhodium catalyzed synthesis of cyclopentenones. 145 Scheme 22. Gold (I)-catalyzed synthesis of cyclopentenones. 145 Scheme 23. Ruthenium-catalyzed synthesis of cyclopentenones. 146 Scheme 24. Ruthenium-catalyzed cycloisomerization of TBS protected cis-2-en-4-yn-1-ols to cyclopentenones. 146 Scheme 25. Deuterium labeling study to determine mechanism. 149 Scheme 26. Plausible mechanism of ruthenium catalyzed cycloisomerization.149

    Chapter 1
    References

    (1) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules; University Science Books: Sausalito, California 1999: Second Ed.
    (2) For general reviews, see: (a) Ho, T.-L. Topics of Organic Synthesis; Wiley Interscience: New York, 1994: p 79. (b) Tietze, L. F. Chem. Rev. 1996, 96, 115. (c) Winkler, J. D. Chem. Rev. 1996, 96, 167. (d) Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137.
    (3) For selected reviews, see: (a) Overman, L. E.; Abelman, M. M.; Kucera, D. J.; Tran, V. D.; Ricaa, D. J. Pure. Appl. Chem. 1992, 64, 1813. (b) Grigg, R. J. Heterocycl. Chem. 1994, 31, 631. (c) de Meijere, A.; Meyer, P. E. Angew. Chem. Int. Ed. Engl. 1994, 33, 2379.
    (4) For selected examples, see: (a) Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1991, 113, 701. (b) Overman, L. E. Ricca, D. J.; Tran, V. D. J. Am. Chem. Soc. 1993, 115, 2042. (c) Trost, B. M.; Shen H. Angew. Chem. Int. Ed. Engl. 2001, 40, 2313. (d) Trost, B. M.; Calkins, T. L.; Bochet, C. G. Angew. Chem. Int. Ed. Engl. 1997, 36, 2632. (e) Vorogushin, A. V.; Wulff, W. D.; Hansen, H.-J. J. Am. Chem. Soc. 2002, 124, 6512.
    (5) For review papers, see: (a) Shore, N. E. In Comprehensive Organometallic Chemistry II; Abel, E. W.; Stone, F. G. A.; Wilkenson, G., Eds.; Pergamon: Oxford, 1995; Vol. 12, p 703. (b) Gao, O.; Schalz, H.-O. Angew. Chem. Int. Ed. Engl. 1998, 37, 911.
    (6) Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Tetrahedron Lett. 1990, 31, 5289.
    (7) Rajesh, T.; Periasamy, M. Tetrahedron Lett. 1998, 39, 117.
    (8) (a) Smit, W. D.; Kireev, S. L.; Nefedov, O. M.; Tarasov, V. A. Tetrahedron Lett. 1989, 30, 4021. (b) Becker, D. P.; Flynn, T. Tetrahedron Lett. 1993, 34, 2087.
    (9) (a) Alcaide, B.; Polanco, C.; Sierra, M. A. Tetrahedron Lett. 1996, 37, 6901. (b) Paqiette, L. A.; Borrelly, S. J. Org. Chem. 1995, 60, 6912 (c) Mukai, C.; Uchiyama, M.; Sakamoto, S.; Hanaoka, M. Tetrahedron Lett. 1995, 36, 5761.
    (10) For review, see Gibson, S. E.; Stevenazzi, A. Angew. Chem. Int. Ed. Engl. 2003, 42, 1800.
    (11) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman, M. I. J. Chem. Soc. Perkin Trans. I, 1983, 977.
    (12) Rautenstrauch, V.; Megard, P.; Conesa, J.; Kuster, W. Angew. Chem. Int. Ed. Engl. 1990, 26, 1413.
    (13) (a) Magnus, P.; Principe, L. M.; Slater, M. J. J. Org. Chem. 1987, 52, 1483. (b) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc. Perkin Trans. I, 1973, 975, and references therin.
    (14) Belanger, D. B.; Mahony, D. J. R. O.; Livinghouse, T. Tetrahedron Lett. 1998, 39, 7637.
    (15) Krafft, M. E.; Bonaga, L. V. R.; Hirosawa, C. Tetrahedron Lett. 1999, 40, 9171.
    (16) Jeong, N.; Hwang, S. H.; Lee, Y.; Chung, Y. K. J. Am. Chem. Soc. 1994, 116, 3159.
    (17) Sugihara, T.; Yamaguchi, M. Synlett 1998, 1384.
    (18) Hayashi, M.; Hashimoto, Y.; Yamamoto, Y.; Usuki, J.; Saigo, K. Angew. Chem. 2000, 112, 645; Angew. Chem. Int. Ed. Engl. 2000, 39, 631.
    (19) Tang, Y.-F.; Deng, L.-J.; Zhang, Y.-D.; Dong, G.-B.; Chen, J.-H.; Yang, Z. Org. Lett. 2005, 7, 593.
    (20) Grossman, R. B.; Buchwald, S. L. J. Org. Chem. 1992, 57, 5803
    (21) (a) Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 9450 (b) Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 5881.
    (22) Morimoto, T.; Chatani, N.; Fukumoto, Y.; Murai, S. J. Org. Chem. 1997, 62, 3762.
    (23) Kondo, T.; Suzuki, N.; Okada, T.; Mitsudo, T. -A. J. Am. Chem. Soc. 1997, 119, 6187.
    (24) (a) Koga, Y.; Kobayashi, T.; Narasaka, K. Chem. Lett. 1998, 249. (b) Kobayashi, T.; Koga, Y.; Narasaka, K. J. Organomet. Chem. 2001, 624, 73.
    (25) Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. J. Am. Chem. Soc. 2002, 124, 3806.
    (26) Shibata, T.; Toshida, N.; Takagi, K. Org. Lett. 2002, 4, 1619.
    (27) Brummond, K. M.; Lu, J. J. Am. Chem. Soc. 1999, 121, 5087.
    (28) Kablaoui, N. M.; Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 5818.
    (29) (b) Chatani, N.; Morimoto, T,; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 1998, 120, 5335.
    (30) Chatani, N; Tobisu, M.; Asaumi, T.; Murai, S. Synthesis, 2000, 925.
    (31) Lee, J.-T.; Thomas, P. J.; Alper, H. J. Org. Chem. 2001, 66, 5424.
    (32) Drent, E.; Kragtwijk, E. Eur. Pat. Appl. EP 577, 206; Chem. Abstr. 1994, 120, 191517c.
    (33) Getzler, Y. D. Y. L.; Mahadevan, V.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1174.
    (34) Madhushaw, R. J.; Li, C.-L.; Shen, K.-H.; Hu, C.-C.; Liu, R.-S. J. Am. Chem. Soc. 2001, 123, 7427.
    (35) (a) Madhushaw, R. J.; Lin, M.-Y.; Sohel, S. M. A.; Liu, R.-S. J. Am. Chem. Soc. 2004, 126, 6895. (b) Lin, M.-Y.; Madhushaw, R. J.; Liu, R.-S. J. Org. Chem. 2004, 69, 7700. (c) Maddirala, S. J.; Odedra, A.; Taduri, B. P.; Liu, R.-S. Synlett, 2006,1173.
    (36) (a) Marshall, J. A.; DuBay, W. J. J. Am. Chem. Soc. 1992, 114, 1450. (b) Marshall, J. A.; DuBay, W. J. J. Org. Chem. 1991, 56, 1685. (c) McDonald, F. E.; Schultz, C. C. J. Am. Chem. Soc. 1994, 116, 9363. (d) Lo, C.-Y.; Guo, H.-Y.; Lian, J.-J.; Shen, F.-M.; Liu, R.-S. J. Org. Chem. 2002, 67, 3930. (e) Kumar, M. P.; Liu, R.-S. unpublished result. (d) Lo, C.-Y.; Pal, S.; Odedra, A.; Liu, R.-S. Tetrahedron Lett. 2003, 44, 3143.
    (37) (a)Van Ornum, S. G.; Cook, J. M. Tetrahedron Lett. 1996, 37, 7185. (b) Van Ornum, S. G.; Cook, J. M. Tetrahedron Lett. 1997, 38, 3657.
    (38) Son, S. U.; Yoon, Y. A.; Choi, D. S.; Park, J. K.; Kim, B. M.; Chung, Y. K. Org. Lett. 2001, 3, 1065.
    (39) (a) Thommer, M.; Gerber, P.; Keese, R. Chimia, 1991, 45, 23. (b) Vander Walls, A.;Keese, R. J. Chem. Soc., Chem. Commun. 1992, 570
    (40) Najdi, S. D.; Olmsteaad, M. M.; Schore, N. E. J. Organomet. Chem. 1992, 431, 335.
    (41) For metal-stabilized cyclic allene species, see: (a) Yin, J.; Abboud, K. A.; Jones, W. M. J. Am. Chem. Soc. 1993, 115, 3810. (b) Jones, W. M.; Klosin, J. Adv. Organomet. Chem. 1998, 42, 147.
    (42) Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173.
    (43) Griffith, W. P.; Ley, S. V.; Whitecombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 1987, 1625
    (44) Trost, B. M.; Angew. Chem. 1995, 107, 285; Angew. Chem. Intl. Ed. Engl. 1995, 34, 259.

    Chapter 2 References

    (1) (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Angew. Chem. Int. Ed. Engl. 1995, 34, 259. (c) Sheldon, R. A. Chem. Ind. (london) 1997, 12.
    (2) (a) Bateson, J. H.; Mitchell, M. B. Organometallic Reagents in Organic Synthesis; Academic Press: London, 1994. (b) Organometallics in Synthesis; Schlosser, M., Ed.; John Wiley & Sons: Chichester, 1994. (c) McQuillin, F. J.; Parker, D. G.; Stephenson, G. R. Transition Metal Organometallics for Organic Synthesis; Cambridge University Press: Cambridge, 1991. (d) Yamamoto, A. Organotransition Metal Chemistry. Fundamental Concepts and Applications; Wiley: New York, 1986. (e) Colquhoun, H. M.; Holton, J.; Thompson, D. J.; Twigg, M. V. New Pathways for Organic Synthesis; Plenum Press: New York, 1984. (f) Davies, S. G. Organotransition Metal Chemistry: Applications to Organic Synthesis; Pergamon Press: Oxford, 1982. (g) Negishi, E. Organometallics in Organic Synthesis; John Wiley & Sons: New York, 1980.
    (3) (a) Tsuji, J. Palladium Reagents and Catalysts; John Wiley & Sons: Chichester, 1995. (b) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987. (c) Heck, R. F. Palladium Reagents in Organic Syntheses; Academic Press: New York, 1985. (d) Trost, B. M.; Verhoeven, T. R. Organopalladium Compounds in Organic Synthesis and in Catalysis. In Comprehensive Organometallic Chemistry; Pergamon Press: Oxford, 1982; Vol 8. p 799. (e) Henry, P. M. Palladium Catalyzed Oxidation of Hydrocarbons; D. Reidel Pub. Co.: Dordrecht, 1980. (f) Tsuji, J. Organic Synthesis with Palladium Compounds; Springer: Berlin, 1980. (g) Maitlis, P. M. The Organic Chemistry of Palladium; Academic Press: New York, 1971; Vols. 1 and 2.
    (4) (a) Lee, D. G.; van den Engh, M. Oxidation in Organic Chemistry; rahanovsky, W. S., Ed.; Academic Press: New York, 1973; part B, Chapter 4. (b) Courtney, J. L. Organic Synthesis by Oxidation with Metal Compounds; Mijs, W. J., de Jonge, C. R. H. I., Eds.; Plenum Press: New York, 1986; Chapter 8, p 445. (c) Martýn, V. S.; Palazo´n, J. M.; Rodrýguez, C. M. Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; John Wiley & Sons: Chichester, 1996; Vol. 6, p 4415.
    (5) For review see, (a) Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98, 2599. (b) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067.
    (6) (a) Siegel, S. Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; John Wiley & Sons: Chichester, 1996; Vol. 6, p 4410. (b) Bennett, M. A.; Matheson, T. W. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 4, p 931. (c) James, B. R. Homogeneous Hydrogenation; Wiley: New York, 1973. (d) Freifelder, M. Practical Catalytic Hydrogenation; Wiley-Interscience: New York, 1971.
    (7) Hallman, P. S.; Evance, D.; Osborn, J. A.; Wilkinson, G. J. Chem. Soc., Chem. Commun. 1967, 305.
    (8) (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1994; Chapter 2. (b) Takaya, H.; Ohta, T.; Noyori, R. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: Weinheim, 1993; Chapter 1. (c) Brunner, H.; Zettlmeier, W. Handbook of Enantioselective Catalysis; VCH: Weinheim, 1993. (d) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345. (e) Noyori, R. Chem. Soc. Rev. 1989, 18, 187. (f) Noyori, R.; Kitamura, M. In Modern Synthetic Methods; Scheffold, R., Ed.;Springer-Verlag: Berlin, 1989; Vol. 5, pp 115-198. (9) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. J. Org. Chem. 1987, 52, 3174.
    (10) Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1997, 507.
    (11) (a) Doucet, H.; Hofer, J.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1993, 850. (b) Doucet, H.; Martin-Vaca, B.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem. 1995, 60, 7247.
    (12) Hofer, J.; Doucet, H.; Bruneau, C.; Dixneuf, P. H. Tetrahedron Lett. 1991, 32, 7409.
    (13) Kondo, T.; Tanaka, A.; Kotachi, S.; Watanabe, Y. J. Chem. Soc., Chem. Commun. 1995, 413.
    (14) (a) Watanabe, H.; Asami, M.; Nagai, Y. J. Organomet. Chem. 1980, 195, 363. (b) Esteruelas, M. A.; Herrero, J.; Oro, L. A. Organometallics 1993, 12, 2377. (c) Davis, S.; Drago, R. S. J. Chem. Soc., Chem. Commun. 1990, Seki, Y.; Takeshita, K.; Kawamoto, K.; Murai, S.; Sonoda, N. J. Org. Chem. 1986, 51, 3890.
    (15) Michelotti, F. W.; Keaveney, W. P. J. Poly. Sci., Part A, 1965, 895.
    (16) (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 39, 2805. (b) Alkene Metathesis in Organic Synthesis; Furstner, A. Ed; New York: Springer, 1998. (c)Trnka, T. M.; Grubbs R. H. Acc. Chem. Res. 2001, 34, 18.
    (17) (a) Murahashi, S.-I.; Yamamura, M.; Yanagisawa, K.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44, 2408. (b) Yi, C. S.; Liu, N. Organometallics 1996, 15, 3968. (c) Kakiuchi, F.; Shinji, M. Acc. Chem. Res. 2002, 35, 826.
    (18) Mitsudo, T.; Naruse, H.; Kondo, T.; Ozaki, Y.; Watanabe, Y. Angew. Chem., Int. Ed. Engl. 1994, 33, 580.
    (19) Mitsudo, T.; Zhang, S.-W.; Nagao, M.; Watanabe, Y. J. Chem. Soc., Chem. Commun. 1991, 598.
    (20) Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.; Watanabe, Y. Organometallics 1995, 14, 1945.
    (21) (a) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25. (b) Lockhart, T. P.; Comita, P. B.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 4082.
    (22) Reviews: (a) Enediyne Antibiotics as Antitumor Agents; Borders, D. B; Doyle, T. W. Eds.; Marcel Dekker: New York, 1995. (b) Xi, Z.; Goldberg, I. H. In Comprehensive Natural Product Chemistry; Barton, D. H. R.; Nakanishi, K. Eds.; Pergamon: Oxford, 1999; Vol. 7, p 553..
    (23) Recent reviews: (a) Basak, A.; Mandal, S.; Bag, S. S. Chem. Rev. 2003, 103, 4077. (b) Rawat, D. S.; Zaleski, J. M. Synlett. 2004, 393. (c) Bowles, D. M.; Palmer, G. J.; Landis, C. A.; Scott, J. L.; Anthony J. E. Tetrahedron 2001, 57, 3753. (d) Grissom, J. W.; Gunawardena, G. U.; Klingberg, D.; Huang, D. Tetrahedron 1996, 52, 6453. (e) Wang, K. K. Chem. Rev. 1996, 96, 207..
    (24) (a) Lee, M. D.; Dunne, T. S.; Siegel, M. M.; Chang, C. C.; Morton, G. O.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3464. (b) Golik, J.; Clardy, J.; Dubay, G.; Groenwold, G.; Kawaguchi, H.; Saitoh, K.; Doyle, T. W. J. Am. Chem. Soc. 1987, 109, 3462. (c) De Voss, J. J.; Townsend, C. A.; Ding, W.-D.; Morton, G. O.; Ellestad, G. A.; Zein, N.; Tabor, A. B.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 9669. (d) De Voss, J. J.; Hangeland, J. J.; Townsend, C. A. J. Am. Chem. Soc. 1990, 112, 4554. (e) Zein, N.; McGahren, W. J.; Morton, G. O.; Ashcroft, J.; Ellestad, G. A. J. Am. Chem. Soc. 1989, 111, 6888.
    (25) (a) Nicolaou, K. C.; Dai, W.-M. J. Am. Chem. Soc. 1992, 114, 8908. (b) Sugiara, Y.; Shiraki, T.; Konoshi, M.; Oki, T. Proc. Natl. Acad. Sci. 1990, 29, 9795. (c) Shiraki, T.; Sugiura, Y. Biochemistry 1990, 29, 9795. (d) Semmelhack, M. F.; Gallgher, J. J.; Kohen, D. Tetrahedron Lett. 1990, 31, 1521. (e) Konoshi, M.; Ohkuma, H.; Matsumoto, K.; Tsumo, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; VanDuyne, G. D.; Clardy, J. J. J. Am. Chem. Soc. 1990, 112, 3715. (f) Nicolaou, K. C.; Dai, W. M.; Wendeborn, S. V.; Smith, A. L.; Torisawa, Y.; Maligres, P.; Hwang, C.-K. Angew. Chem., Int. Ed. Engl. 1991, 30, 1034.
    (26) (a) Myers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc. 1989, 111, 8057. (b) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. Tetrahedron Lett. 1989, 30, 4995.
    (27) (a) Konig, B.; Rutters, H. Tetrahedron Lett. 1994, 35, 3501; (b) Konig, B.; Schofield, E.; Bubenitschek, P.; Jones, P. G. J. Org. Chem. 1994, 59, 7142. (c) Warner, B. P.; Miller, S. P.; Broee, R. D.; Buchwald, S. L. Science 1995, 269, 814
    (28) Rawat, D. S.; Zaleski, J. M. J. Am. Chem. Soc. 2001, 123, 9675.
    (29) (a) Merlic, C. A.; Pauly, M. E. J. Am. Chem. Soc. 1996, 118, 11319. (b) Miura, T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518. (c) Shen, H.-C.; Pal, S.; Lian, J.-J.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 15762.
    (30) (a) Wang, Y. S.; Finn, M. G. J. Am. Chem. Soc. 1995, 117, 8045. (b) O’Connor, J. M.; Friese, S. J.; Tichenor, M. J. Am. Chem. Soc. 2002, 124, 3506. (c) Ohe, K.; Kojima, M.-a; Yohehara, K.; Uemura, S. Angew. Chem. Int. Ed. Engl. 1996, 35, 1823. (d) Manabe, T.; Yanagi, S.-I.; Ohe, K.; Uemura, S. Organometallics 1998, 17, 2942.
    (31) For anionic Bergman cyclization, see : (a) Wu, M.-J.; Lin, C.-F.; Lu, E.-D. J. Org. Chem. 2002, 67, 5907. (b) Wu, M.-J.; Lee, C.-Y.; Lin, C.-F.. (c) Magnus, P.; Eisenbeis, S. A.; Rose, W. C.; Zein, N.; Solmon, W. J. Am. Chem. Soc. 1993, 115, 12627. (d) Sugiyama, H.; Yamashita, K.; Nishi, M.; Saito, I. Tetrahedron Lett. 1992, 33, 515.
    (32) For the cyclization of strained enediynes with anionic nucleophiles, the enediynes actually underwent traditional Bergman or Saito-Myers diradical processes after attack of anionic nucleophiles. See examples, see: (a) Nicolaou, K. C.; Dai, W. M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387 and references therein. (b) Hirama, M; Fujiwara, K.; Shigematsu, K.; Fukazara, Y. J. Am. Chem. Soc. 1989, 111, 4120. (c) Wender, P. A.; Hartmata, M.; Jefferey, D.; Mukai, C.; Suffert, J. Tetrahedron Lett. 1988, 29, 909. (d) Bekele, T.; Brunette, S. R.; Lipton, M. A. J. Org. Chem. 2003, 68, 8741.
    (33) For catalytic reactions that use this ruthenium catalyst, see selected examples (a) Yeh, K.-L.; Liu, B.; Lo, C.-Y.; Liu, R.-S. J. Am. Chem. Soc. 2002, 124, 6510. (b) Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 9294. (c) Shen, H.-C.; Pal, S.; Lian, J.-J.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 15762. (d) Madhushaw, R. J.; Lin, M-Y.; Abu Sohel S. M.; Liu, R.-S. J. Am. Chem. Soc. 2004, 126, 6895. (e) Madhushaw, R.-J.; Lo, C.-Y.; Huang, C.-W.; Su, M.-D.; Shen, H.-C.; Pal, S.; Shaikh, I. R.; Liu, R.-S. J. Am. Chem. Soc. 2004, 126, 15560 (f) Odedra, A.; Wu, C.-J.; Pratap, T. B.; Huang, C.-W.; Ran, Y.-F.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 3406.
    (34) Chan, W.-C.; Lau, C.-P.; Chan, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G. Organometallics 1997, 16, 34.
    (35) Tellers, D. M.; Skoog, S. J.; Bergman, R. G.; Gunnoe, T. B.; Harman, W. D. Organometallics 2000, 19, 2428.
    (36) For cyclization of enediynes via diradical pathways, see: ref. 1(b) and (a) Jones, L. H.; Hartwig, C. W.; Wentworth, P. Jr; Simeonov, A.; Wentworth, A. D.; Py, S.; Ashley, J. A.; Lerner, R. A.; Janda, K. D. J. Am. Chem. Soc. 2001, 123, 3607. (b) Grissom, J. W.; Gunawardena, G. U. Tetrahedron Lett. 1995, 36, 4951. (c) Schottelius, M.; Chen, P. J. Am. Chem. Soc. 1996, 118, 4896. (d) Dai, W.-M. Curr. Med. Chem. 2003, 10, 2265.
    (37) For cyclization of enediynes with electrophile-additiona-c and radical cationd, see: (a) Whitlock, H. W. Jr.; Sandvick, P. E.; Overman, L. E.; Reichardt, P. B. J. Org. Chem. Soc. 1969, 34, 879. (b) Whitlock, H. W. Jr.; Sandvick, P. E. J. Am. Chem. Soc. 1966, 88, 4525. (c) Schreiner, P. R.; Prall, M.; Lutz, V. Angew. Chem., Int. Ed. Engl. 2003, 42, 5757. (d) Schmittel, M.; Kiau, S. Liebigs Ann/Recueil, 1997, 1391.
    (38) (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Bruneau, C.; Dixneuf, P. Acc. Chem. Res. 1999, 32, 311. (c) Puerta, M. C.; Valerga, P. Coord. Chem. Rev. 1999, 193-195, 977.
    (39) In the presence of aliphatic amine base, cationic ruthenium complex tends to react with terminal alkyne to give alkynylruthenium species. See: (a) Bustelo, E.; Carbo, J. J.; Lledos, A.; Mereiter, K.; Puerta, M. C.; Valerga, P. J. Am. Chem. Soc. 2003, 125, 3311. (b) Bruce, M. I.; Wallis, R. C. Aust. J. Chem. 1979, 32, 1471. (c) Haquette, D. T.; Pirio, N.; Touchard, L.; Toupet, P. H.; Dixneuf, J. J. Chem. Soc., Chem. Commun. 1993, 163. (d) Yang, S.-M.; Chan, M. C.-W.; Cheung, K.-K.; Che, C.-M.; Peng, S.-M. Organometallics, 1997, 16, 2819.
    (40) (a) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. Engl. 2002, 41, 4563. (b) Tokunaga, M.; Wakatsuki, Y. Angew. Chem. Int. Ed. Engl. 1998, 37, 2867. (c) Damiano, J. P.; Postel, M. J. Organomet. Chem. 1996, 522, 303. (d) Uemura, S.; Miyoshi, H.; Okano, M. J. Chem. Soc. Perkin Trans. 1, 1980, 1098. (e) Baidossi, W.; Lahav, M.; Blum, J. J. Org. Chem. 1997, 62, 669.
    (41) CpRuL(CH3CN)2PF6 [L=PPh3, P(t-Bu)3 and P(n-Bu)3] and Cp*RuL (CH3CN)2PF6 complexes were prepared in situ by treatment of CpRu(CH3CN)3PF6 and C5Me5Ru(CH3CN)3PF6 with an equimolar amount of phosphine ligand.
    (42) Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, G. C. Org. Lett. 2000, 2, 1729.
    (43) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.
    (44) For PtCl2 catalyzed reactions see, Taduri, B. P.; Ran, Y.-F.; Huang, C.-W.; Liu, R.-S. Org. Lett. 2006, 8, 883
    (45) Et3SiH will add to carbene intermediate via a Si-H bond insertion. See: (a) Alder, R. W. In “Carbene Chemistry; Bertrand, G. Ed.; Marcel Dekker, New York, 2002, pp. 153. (b) Bertrand G. in Carbene Chemistry (Ed.: G. Bertrand). Marcel Dekker, New York, 2002, p. 177-203.
    (46) The exchange between D2O and alkynyl proton can proceed via an alkynyl- ruthenium hydride species, which was responsible for the ruthenium-π-alkyne and ruthenium-vinylidene equilibrium. See references 34 and 38.
    (47) Miura, T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518.
    (48) For a mechanistic study of the cis-vinylmetal and trans-vinylmetal isomerization reaction, see: Bodner, G. S.; Smith, D. E.; Hatton, W. G.; Heah, P. C.; Georgiou, S.; Reingold, A. L.; Geib, S. J.; Hutchinson, J. P.; Gladysz, J. A. J. Am. Chem. Soc. 1987, 109, 7688.
    (49) For the trans-insertion of alkyne into metal-hydride and -chloride bonds, see: (a) Huggins, J. M.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 3002. (b) Vessey, J. D.; Mawby, R. J. J. Chem. Soc. Dalton Trans. 1993, 51.
    (50) Alcock, N. W.; Burns, I. D.; Claire, K. S.; Hill, A. F. Inorg. Chem. 1992, 31, 2906.
    Chapter 3 References

    (1) (a) Lowry, T. H.; Richardson, K. S. Mechanism of Theory in Organic Chemistry; Harper and Row Publishers: New York, 1987. (b) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry; Verlag Chemie: Weinheim, 1970. (c) Hoffmann, R.; Woodward, R. B. Acc. Chem. Res. 1968, 1, 17. (d) Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1969, 8, 781. (e) Fleming, I. Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons: New York, 1976.
    (2) (a) Hansson, T.; Sterner, O.; Wickberg, B. J. Org. Chem. 1992, 57, 3822.
    (b) Feldman, K. S. J. Am. Chem. Soc. 1997, 62, 4983. (c) Lenihan, B. D.; Shechter, H. J. Org. Chem. 1998, 63, 2086. (d) Korth, H.-G.; Sustmann, R.; Lommes, P.; Paul, T.; Ernst, A.; de Groot, H.; Hughes, L.; Ingold, K. U. J. Am. Chem. Soc. 1994, 116, 2767. (e) Diedrich, M. K.; Klarner, F.-G. J. Am. Chem. Soc. 1998, 120, 6212.
    (3) Alabugin, I. V.; Manoharan, M.; Breiner, B.; Lewis, F. D. J. Am. Chem. Soc. 2003, 125, 9329 and references therein.
    (4) (a) Houk, K. N.; Li, Y.; Evanseck, J. D. Angew. Chem. Int., Ed. Engl. 1992, 31, 682. (b) Houk, K. N.; Gonzalez, J.; Li, Y. Acc. Chem. Res. 1995, 28, 81.
    (5) Spangler, C. W. Chem. Rev. 1976, 76, 187.
    (6) Dehnhardt, C.; McDonald, M.; Lee, S.; Floss, H. G.; Mulzer, J. J. Am. Chem. Soc. 1999, 121, 10848.
    (7) (a) Hudlicky, T.; Reed, J. W. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, Part 8.1, p 899. (b) Glass D. S.; Boikess, R. S.; Winstein, S. Tetrahedron Lett. 1966, 999.
    (8) (a) Fray, H. M.; Solly, R. K. J. Chem. Soc. B 1970, 996. (b) Daub, J. P.; Berson, J. A. Tetrahedron Lett. 1984, 25, 4463.
    (9) Lin, Y.-L.; Turos, E. J. Am. Chem. Soc. 1999, 121, 856.
    (10) Okamura, W. H. Acc. Chem. Res. 1983, 16, 81 and references cited therein. (b) Wu, K.-M.; Midland, M. M.; Okamura, W. H. J. Org. Chem. 1990, 55, 4381. (c) Shen, G. Y.; Tapia, R.; Okamura, W. H. J. Am. Chem. Soc. 1987, 109, 7499.
    (11) Shen, G.-Y.; de Lera, A. R.; Norman, T. C.; Haces, A.; Okamura, W. H. Tetrahedron Lett. 1987, 28, 2917 and references cited therein.
    (12) Okamura, W. H.; Aurrecoechea, J. M.; Gibba, R. A.; Norman, A. W. J. Org. Chem. 1989, 54, 4072 and references cited therein.
    (13) (a) For the review of acetylenic Cope rearrangements see: Viola, A.; Collins, J. J.; Fillip, N. Tetrahedron, 1981, 37, 3765. (b) Hopf, H.; Wolff, J. Eur. J. Org. Chem. 2001, 4009.
    (14) (a) Brown, R. F. C.; Hariington, K. J. J. Chem. Soc., Chem. Commun. 1972, 1175. (b) Brown, R. F. C.; Eastwood, F. W. Synlett 1993, 38, 7255.
    (15) (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Bruneau, C.; Dixneuf, P. Acc. Chem. Res. 1999, 32, 311. (c) Bruneau, C. Topics Organomet. Chem. 2004, 11, 125.
    (16) Landon, S. J.; Shulman, P. M.; Geoffroy, G. L. J. Am. Chem. Soc. 1985, 107, 6739.
    (17) Murahashi, S.-I.; Yamamura, M.; Yanagisawa, K.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44, 2408.
    (18) Merlic, C. A.; Pauly, M. E. J. Am. Chem. Soc. 1996, 118, 11319.

    (19) Shen, H.-C.; Pal, S.; Lian, J.-J.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 15762.
    (20) Shen, H.-C.; Tang, J. M.; Chang, H. K.; Yang, C. W.; Liu, R.-S. J. Org. Chem. 2005, 70, 10113.
    (21) Maeyama, K.; Iwasawa, N. J. Org. Chem. 1999, 64, 1344.
    (22) Miura,T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518.
    (23) Zimmermann, G. Eur. J. Org. Chem. 2001, 457.
    (24) (a) Gerdes, J. M.; Lewicka-Piekut, S.; Condran, P., Jr.; Okamura, W. H. J. Org. Chem. 1981, 46, 5197. (b) Chandraratna, R. A. S.; Bayerque, A. L.; Okamura, W. H. J. Am. Chem. Soc. 1983, 105, 3588.
    (25) (a) Xi, Z.; Guo, R.; Mito, S.; Yan, H.; Kanno, K.-i.; Nakajima, K.; Takahashi, T. J. Org. Chem. 2003, 68, 1252. (b) O’Brien, X. M.; Parker, J. A.; Lessard, P. A.; Sinskey, A. J. Appl Microbiol Biotechnol 2002, 59, 389.
    (26) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325 and references cited therein.
    (27) Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. Engl. 2005, 44, 3913.
    (28) (a) Trost, B. M.; Krische, M. J. Synlett 1998, 1. (b) Trost, B. M.; Pinkerton, A. B. Org. Lett. 2000, 2, 1601. (c) Schore, N. E. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier: New York, 1995; Vol. 12, p 703. (d) Schore, N. E. Comprehensive Organic Synthesis: Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon: Oxford, 1991; Vol. 5, p 1037.
    (29) (a) Dobbs, D. A.; Vanhessche, K. P. M.; Brazi, E.; Rautenstrauch, V.; Lenoir, J.-Y.; Genet, J.-P.; Wiles, J.; Bergens, S. H. Angew. Chem., Int. Ed. Engl. 2000, 39, 1992. (b) Frater, G.; Bajgrowicz, J. A.; Kraft, P. Tetrahedron 1998, 54, 7633. (c) Seepersaud, M.; Al-abed, Y. Tetrahedron Lett. 2000, 41, 4291.
    (30) Tanaka, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 11492.
    (31) Garcia-Gomez, G.; Moreto, J. M. J. Am. Chem. Soc. 1999, 121, 878.
    (32) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802.
    (33) Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442.
    (34) (a) Maier,G. Angew. Chem., Int. Ed. Engl. 1967, 6, 402. (b) Tessier, P. L.; Nguyen, N.; Clay, M. D.; Fallis, A. G. Org. Lett. 2005, 7, 767. (c) Rautenstrauch, V. J. Org. Chem. 1984, 49, 950.
    (35) For metal-catalyzed reactions of 3-en-1-ynes, see (a) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901. (b) Nieto-Oberhuber, C.; Lopez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178. (c) Saito, S.; Ohmori, O.; Yamamoto, Y. Org. Lett. 2000, 2, 3853.
    (36) Larock, R. C.; Doty, M. J.; Han, X. J. Org. Chem. 1999, 64, 8770.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE