簡易檢索 / 詳目顯示

研究生: 謝旻翰
Hsieh, Min-Han
論文名稱: A Fault Diagnosis Support System for Identifying Abnormal Operating Procedures in a Nuclear Power Plant
核能電廠的異常事件診斷輔助系統之建構
指導教授: 黃雪玲
Hwang, Sheue-Ling
口試委員: 黃雪玲
Hwang, Sheue-Ling
梁曉帆
Max Liang, Sheau-Farn
莊長富
Chuang, Chang-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 84
中文關鍵詞: 核能電廠人因工程錯誤診斷運轉員輔助系統
外文關鍵詞: Nuclear power plant, Human factor, Fault identification, Operator support system
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了預防運轉員決策失誤而危及核能電廠安全運轉,本研究目的主要在於建立異常事件診斷輔助系統,簡化運轉員診斷異常狀況之過程,並協助運轉員快速精準地找到相對應的異常操作程序書。同時本研究從人因工程的觀點進行實驗,藉由比較運轉員原始診斷模式與配置本研究發展之異常事件診斷輔助系統診斷模式,進行人員績效與心智負荷的評估,驗證本研究發展之技術是否能夠降低人員心智負荷與提升診斷績效。
    首先根據異常操作程序書內容、觀察運轉員處理警報與篩選程序書之流程以及與運轉員和從事核電廠工作之專家們的訪談結果,探討不同異常事件之徵兆的來源類型。接著收集所有與異常事件相關的徵兆,建立篩選異常操作程序書機制,並建立異常事件診斷輔助系統。此外,設計一模擬實驗,藉由比較原始診斷模式與配置異常事件輔助系統診斷模式之受試者決策時間、作業績效、心智負荷,衡量人員績效提昇以及負荷降低之程度。
    研究結果顯示,使用異常事件診斷輔助系統,且顯著提升人員績效,平均決策時間減少約25%,平均正確率上升約18%,發生遺漏失誤顯著下降,心智負荷顯著低於未配置輔助系統之模式。因此,研究建議可以應用異常事件診斷輔助系統於主控室以幫助人員尋找相對應的異常操作程序書。不僅爭取更多時間給運轉員處理警報,且降低人員心理壓力,減少錯誤決策而導致異常事件惡化的情況發生。


    In order to prevent safety hazards that can result from inappropriate decisions made by the operators of a nuclear power plant (NPP), this study was undertaken to develop a fault diagnosis support system to reduce the complexity of the decision-making process by aiding operators’ cognitive activities, integrating unusual symptoms, and identifying the most suitable abnormal operating procedure (AOP) for operators. The study was conducted from the perspective of human factors engineering in order to compare the process that operators originally used to diagnose potential and actual faults with a process that included a support system for diagnosing faults.
    First of all, based on interview, procedures studies and observations, the different kinds of symptom source related to the AOPs were discussed. Next, the unusual symptoms were collected and the rule of identification was constructed, which formed the fault diagnosis support system. Afterwards, an experiment was conducted to verify system effectiveness and reduction of workload by computing decision time, the number of errors and NASA TLX task load index.
    The results of the study indicated that the existence of a support system for fault diagnosis makes the task of fault diagnosis easier and reduces errors by quickly suggesting likely AOPs. With such a support system in place, there were clear improvements in human performance, i.e., decision-making time decreased by about 25%, and the accuracy of the operators’ decisions, judged by the successful resolution of specific problems, increased by about 18%. In addition, there were fewer erroneous solutions implemented, and the mental workload was reduced. Hence, it is recommended that the fault diagnosis support system be applied in identifying the AOPs in the main control room (MCR).

    摘要 I Abstract II 誌謝 III Glossary VIII Chapter 1 Introduction ............................................................................................. 1 1.1 Background ............................................................................................................ 1 1.2 Motivation ............................................................................................................. 1 1.3 Objective ................................................................................................................ 2 1.4 Research framework .............................................................................................. 2 Chapter 2:Literature review .................................................................................. 4 2.1 The alarm system in NPP ...................................................................................... 4 2.2 Diagnosis and cognition model ............................................................................. 5 2.3 Expert systems and operator support systems ....................................................... 7 2.3.1 Expert system applications in NPPs ............................................................. 8 2.3.2 Issues regarding the design of support systems for operators ..................... 11 2.4 Evaluation methods ............................................................................................. 12 Chapter 3 Methodology ........................................................................................... 15 3.1 Issue of fault diagnosis in NPPs .......................................................................... 15 3.2 Development of a fault diagnosis support system ............................................... 16 3.2.1 Constructing the abnormal symptom database ........................................... 17 3.2.2 The fault diagnostic process ........................................................................ 21 3.2.3 The output of the fault diagnosis supporting system .................................. 23 3.3 Experiment ........................................................................................................... 24 3.3.1 Participants .................................................................................................. 24 3.3.2 Experimental design.................................................................................... 24 3.3.3 Experimental environments ........................................................................ 26 3.3.4 Experimental tasks ...................................................................................... 28 3.3.5 Experimental procedures ............................................................................ 31 Chapter 4 Results ..................................................................................................... 33 4.1 Normal distribution tests ..................................................................................... 33 4.2 Decision-making Time ........................................................................................ 35 4.3 Number of Errors ................................................................................................. 38 4.3.1 The accuracy of decision making ............................................................... 38 4.3.2 The error type of decision-making .............................................................. 40 4.4 Subjective workload rating NASA-TLX ............................................................. 42 4.5 Subjective preference .......................................................................................... 43 Chapter 5 Discussion ............................................................................................... 45 5.1 Comparison of the operating modes .................................................................... 45 5.2 Presentation of information concerning the support system ............................... 47 5.3 Study limitations .................................................................................................. 47 Chapter 6 Conclusion and Future work ................................................................ 49 References ................................................................................................................. 51 Appendix 1 System level alarm list ........................................................................... 55 Appendix 2 Abnormal operating procedure list ........................................................ 58 Appendix 3 The abnormal symptom matrix .............................................................. 61 Appendix 4 Experimental AOPs ............................................................................... 67 Appendix 5 Preview information for the subjects ..................................................... 81 Appendix 6 NASA-TLX Questionnaire .................................................................... 82

    [1] Belen, T., Rosario, M. A., Rosario, S., 2007. An Experimental Study of Operator Activity Using an Advanced Alarm System in Nuclear Power Plant Control Room. 8th Annual Institute of Electrical and Electronics Engineers Conference on Human Factors and Power Plants and 13th Annual Workshop on Human Performance / Root Cause / Trending / Operating Experience / and Self Assessment, August 26-31 (8th IEEE HFPP / 13th HPRCT).
    [2] Bernard J., 1999. Issues regarding the design and acceptance of intelligent support systems for reactor operators. IEEE Trans Nucl Sci; 39(5):1549–58.
    [3] Cegarra, J., and Chevalier, A., 2008. The use of Tholos software for combining measures of mental workload: Toward theoretical and methodological improvements. Psychonomic Society, Inc., 40, 988-1000.
    [4] Conrad, R., 1951. Speed and load stress in a sensori-motor skill. British Journal of Industrial Medicine, 8, 1–7.
    [5] Furuta, K., Simada, T., Kondo, S., 1999. Behavioral simulation of a nuclear power plant operator crew for human–machine system design. Nuclear Engineering and Design 188, 97–109.
    [6] Hart, S.C., Staveland, L.E., 1988. Development of a multidimensional workload rating scale: results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (Eds.), Human Mental Workload. Elsevier, Amsterdam. The Netherlands.
    [7] Hogg, D.N., Folleso, K., Volden, F.S., Torralba, B., 1995. Development of a situation awareness measure to evaluate advanced alarm systems in nuclear power plant control rooms. Ergonomics 38 (11), 2394–2413.
    [8] Isaac, A., Shorrock, S. T., Kirwan, B., 2002. Human error in European air traffic
    52
    management: the HERA project. Reliability Engineering and System Safety, 75, 252–272.
    [9] Joseph A. NASER, David G. CAIN, Bill K.-H. SUN, Robert W. COLLEY, Norris S. HIROTA and Floyd E. GELHAUS., 1989. Expert System Applications To Nuclear Power For Enhancement of Productivity And Performance.
    [10] Kantowitz, B. H., 1988. Laboratory simulation of maintenance activity. Proceedings of the 1988 IEEE 4th Conference on Human Factors and Nuclear Power Plants, 403-409. New York: IEEE.
    [11] Kim, J. H., Seong, P. H., 2006. The effect of information types on diagnostic strategies in the information aid, Reliability Engineering and System Safety.
    [12] Kim, J.T., Kwon, K.C., Hwang, I.K., Lee, D.Y., Park, W.M., Kim, J.S., Lee, S.J., 2001. Development of advanced I & C in nuclear power plants: ADIOS and ASICS. Nuclear Engineering and Design 207, 105-119.
    [13] Kwon, K.C., Kim, J.H., 1999. Accident identification in nuclear power plants using hidden Markov models. Engineering Applications of Artificial Intelligence 12, pp. 491–501.
    [14] Lee, S.J., Mo, K., Seong, P.H., 2007. Development of an Integrated Decision Support System to Aid the Cognitive Activities of Operators in Main Control Rooms of Nuclear Power Plants. In: Proc. of IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM), pp. 146–152.
    [15] Ma, R., Kaber, D.B., Jones, J.M., Starkey, R.L., 2006. Team situation awareness in nuclear power plant process control: a literature review, task analysis and future research. In: In: ANS Fifth International Topical Meeting on Nuclear Plant Instrumentation, Controls, and Human Machine Interface Technology, Alberquerque, November 12–16.
    53
    [16] Miller G. A., 1956. The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63. 81-97.
    [17] Noyes, J. M. and Bransby, M., 2001. People in Control: Human Factors in Control Room Design, 207-221.
    [18] O’Donnell, R. D.; Eggemeier, F. T. 1986. Workload assessment methodology, in Handbook of Perception and Human Performance, vol 2, Cognitive Processes and Performance. Ed. by Boff, K. R.; Kaufman, L.; Thomas, J. P. 1st edition. New York: Wiley, 42:1–42:9. ISBN 0471885444.
    [19] O’Hara, J. M., Brown, W. S., Hallbert, B., Skraning, G., Persensky, J. J., Wachtel, J., 2000. The effects of alarm display, processing and availability on crew performance (NUREG/CR-6691). Washington, DC: U.S. Nuclear Regulatory Commission.
    [20] O’Hara, J. M., Brown, W. S., Lewis, P. M., and Persensky, J. J., 2002. Human-System Interface Design Review Guidelines (NUREG-0700). Washington, DC: U.S. Nuclear Regulatory Commission.
    [21] Papin, B., Quellien, P., 2006. The operational complexity index: a new method for the global assessment of the human factor impact on the safety of advanced reactors concepts. Nuclear Engineering and Design 236, 1113–1121.
    [22] Parasuraman, R., Mouloua, M.,1996. Automation and human performance: Theory and applications. Mahwah, NJ: Erlbaum.
    [23] Payne, J. W., J. Bettman, E. J. Johnson. 1993. The Adaptive Decision-Maker. Cambridge University Press, New York.
    [24] Rouse, W.B. and Rouse, S.H., 1983. Analysis and classification of human error. IEEE Transactions on Systems, Man, and Cybernetics, SMC-14: 539-549.
    [25] Sanders, M.S., Mccormick, E.J., 1992. Human factors in engineering and design., 7th Edition.. McGraw–Hill Inc., NewYork.
    54
    [26] Stanton, N., 1994. Human Factors In Alarm Design. Taylor & Francis, London, 165-178
    [27] Treisman, A. M., 1969. Strategies and models of selective attention. Psychological Review, 76, 282-299.
    [28] Vicente, K.J., Moray, N., Lee, J.D., Rasmussen, J., Jones, B.G., Brock, R., Djemil, T., 1996. Evaluation of a Rankine cycle display for nuclear power plant monitoring and diagnosis. Human Factors 38 (3), 506–521.
    [29] Wickens, C. D.,1984. Processing resources in attention. In R. Parasuraman and D. R. Davis (Eds.), Varieties ofattentlon (pp. 63-102). New York: Academic Press.
    [30] Wickens, C. D.,1992. Engineering psychology and human performance. New York: Harper Collins.
    [31] Yoshikawa, H., 2005. Human-machine interaction in nuclear power plants, Nuclear Engineering and Technology, Vol. 79, no. 2, pp. 151-158.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE