研究生: |
林志遠 Lin, Chih-Yuan |
---|---|
論文名稱: |
高工作電壓LiNi0.5Mn1.5O4正極材料與高安全性Li4Ti5O12負極材料之合成及其電化學性質之改善 Synthesis and Improvement of Electrochemical Characteristics in High Voltage Cathode Material LiNi0.5Mn1.5O4 and High Safety Anode Material Li4Ti5O12 |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
楊模樺
陳金銘 許家豪 陳柏宇 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 148 |
中文關鍵詞: | 正極材料LiNi0.5Mn1.5O4 、負極材料Li4Ti5O12 、鋰離子二次電池 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於電動車市場的崛起,鋰電池的需求已由原先高能量密度轉變為高功率密度和長循環壽命。因此,本研究擬定針對高功率密度與長循環壽命之LiNi0.5Mn1.5O4正極材料及Li4Ti5O12負極材料進行研究。
藉由改良式固態法可有效合成多孔性無雜相之LiNi0.5Mn1.5O4正極材料。隨著多孔性結構形成,電容量由原先的105增加至120 mA/g而且循環壽命也從65 % (充放電500圈)提昇至80 % (充放電1000圈)。
調整煆燒溫度(700∼800 0C)製備出LiNi0.5Mn1.5O4擁有Fd3m與(Fd3m+P4332)混合之space group。在55 0C,Fd3m與混合相(Fd3m+P4332)結構之LiNi0.5Mn1.5O4在150圈充放電後,電容量仍有77 與83 %。擁有Fd3m 結構 之LiNi0.5Mn1.5O4電容量衰退可歸咎於Mn3+的分解((Mn3+→Mn2+ + Mn4+)。
經由混合LiCl、TiCl4與草酸經過兩階段燒結過程製備出多孔性負極材料Li4Ti5O12。此多孔性Li4Ti5O12負極材料在0.5、1、5、10 C的充放電速率下,分別出現167、133、100、70 mAh/g且在充放電200圈後,電容量仍然維持超過98 %。
經由調整第一階段燒結溫度的調整能有效使Li2TiO3產生,此化合物能進一步與rutile TiO2反應成純相Li4Ti5O12。純相Li4Ti5O12在0.5與1 C的充放電速率下,能呈現出169與150 mAh/g的電容量且在150圈充放電後,電容量仍然維持超過98 %,然而,有TiO2雜相出現時,在相同的充放電速率下,只有148與125 mAh/g。
為了全面性改善Li4Ti5O12導電性差之缺點,結合Ru doping 與carbon coating的技術來改善Li4Ti5O12粉體內部導電度和降低外部Li4Ti5O12粉體間的傳輸阻抗。在5與10 C的充放電速率且充放電100圈後, Li4Ru0.01Ti4.99O12/C 仍出現120與110 mAh/g。由改質結果可知,Li4Ru0.01Ti4.99O12/C擁有最好的充放電能力與最佳的電容量。
[1] Lithium Ion Rechargeable Batteries, Kazunori Ozawa, Willey-Vch, 2009, p.11
[2] H. S. Fang, Z. X. Wang, X. H. Li, H. J. Guo and W. J. Peng, J. Power Sources 153 (2006) 174
[3] X. Wu and S. B. Kim, J. Power Sources 53 (2002) 53
[4] S. T. Myung, S. Komaba, N. Kumagai, H. Yashiro, H. T. Chung and T. H. Cho, Electrochim. Acta 47 (2002) 2543
[5] R. Santhanam and B. Rambabu, J. Power Sources 195 (2010) 5442
[6] Q. Zhang, A. Bonakdarpour, M. Zhang, Y. Gao and J. R. Dahn, J. Electrochem. Soc. 144 (1997) 205
[7] M. Venkateswarlu, C. H. Chen, J. S. Do, C. W. Lin, T. C. Chou and B. Hwang, J. Power Sources 146 (2005) 204
[8] J. L. Allen, T. R. Jow and J. Wolfenstine, J. Power Sources 159 (2006) 1340
[9] J. J. Huang and Z. Y. Jiang, Electrochim. Acta 53 (2008) 7756
[10] Z. Lin, X. Hu, Y. Huai, L. Liu, Z. Deng and J. Suo, Solid State Ionics 181 (2010) 412
[11] P. P. Prosini, R. Mancini, L. Petrucci, V. Contini and P. Villano, Solid State Ionics 144 (2001) 185
[12] J. Hajek, French Patent, 8 (1949) 10
[13] K. A. Klinedinst, U. S. Patent NO. 4, 176, 214 (1979)
[14] A. A. Schneider, U. S. Patent NO. 4, 010, 043 (1972)
[15] M. S. Whittinggham, Science, 192 (1976) 1126
[16] J. M. Amarilla, J. L. M. de Vidales and R. M. Rojas, Solid State Ionics 127 (2000) 73
[17] T. Nagaura, Prog. Batteries Solar Cells 10 (1991) 209
[18] K. Ozaea, Solid State Ionics 69 (1994) 212
[19] Lithium Batteries-Science and Technology, G. A. Nazri and G. Pistoia, Springer, 2009, p.9
[20] Lithium Batteries-Science and Technology, G. A. Nazri and G. Pistoia, Springer, 2009, p.5-8
[21] J. B. Goodenough and Y. Kim, Chem. Mater., 22 (2010) 587
[22] K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mater. Res. Bull. 15 (1980) 783
[23] H. Yoshizawa and T. Ohzuku, Abstract #467 IMLB2006, Biarritz, France, June, 2006
[24] A. Van der Ven, M. K. Aydinol and G. Ceder, Phys. Rev. B, 58 (1998) 2975
[25] S. Venkatraman, Y. Sfin and A. Manthiram, Electrochem. Solid-State Lett. 6 (2003) A9
[26] G. Dutta, A. Manthiram and J. B. Goodenough, J. Solid State Chem. 96 (1992) 123
[27] A. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamamura, M. Takano, K. Ohyama, M. Ohashi and Y. Yamaguchi, Solid State Ionics 78 (1995) 123
[28] J. R. Dahn, E. W. Fuller, M. Obrovac and U. V. Sacken, Solid State Ionics 69 (1994) 265
[29] C. C. Chang, J. Y. Kim and P. N. Kumta, J. Power Sources 89 (2000) 56
[30] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 4
[31] M. Wakihara, Materials Science and Engineering R33 (2001) 109
[32] N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier and M. Armand, J. Power Sources 97-98 (2001) 503
[33] J. K. Kim, G. Cheruvally, J. W. Choi, J. U. Kim, J. H. Ahn, G. B. Cho, K. W. Kim and H. J. Ahn, J. Power Sources 166 (2007) 211
[34] W. Ojczyk, J. Marzec, K. Swierczek, W. Zajac, M. Molenda, R. Dziembaj and J. Molenda, J. Power Sources 173 (2007) 700
[35] S. Y. Chung, J. T. Bloking and Y.M. Chiang, Nature Mater., 1 (2002) 123
[36] J. M. Tarascon and D. Guyomard, Electrochemical Acta 9 (1993) 1221
[37] R. J. Gummow, A. Dekock and M. M. Thackeray, Solid State Ioics 69 (1994) 59
[38] H. Fang, Z. Wang, B. Zhang, X. Li and G. Li, Electrochemistry Communications 9 (2007) 1077
[39] T. Ohzuku, S. Takeda and M. Iwanaga, J. Power Sources 81–82 (1999) 90
[40] J. Shu, T. F. Yi, M. Shui, Y. Wang, R. S. Zhu, X. F. Chu, F. Huang, D. Xu and L. Hou, Computational Materials Science 50 (2010) 776
[41] R. Santhanam and B. Rambabu, J. Power Sources 195 (2010) 5442
[42] H. Y. Xu, S. Xie, N. Ding, B. L. Liu, Y. Shang and C.H. Chen, Electrochim. Acta. 51 (2006) 4352
[43] R. Alcantara, M. Jaraba, P. Lavela and J. L. Tirado, Electrochim. Acta. 47 (2002) 1829
[44] S. W. Oh, S. H. Park, J. H. Kim, Y. C. Bae and Y. K. Sun, J. Power Sources 157 (2006) 464
[45] Z. R. Chang, Z. J. Chen, F. Wu, H. W. Tang, Z. H. Zhu, X. Z. Yuan and H. J. Wang, Electrochim. Acta 53 (2008) 5927
[46] J. H. Kim, S. T. Myung and Y. K. Sun, Electrochim. Acta. 49 (2004) 219
[47] Z. Chang, D. Dai, H. Tang, X. Yu, X. Z. Yuan and H. Wang, Electrochim. Acta. 55 (2010) 5506
[48] J. H. Kim, S. T. Myung and Y. K. Sun, Electrochim. Acta. 49 (2004) 219
[49] X. Zhang, J. Liu, H. Yu, G. Yang, J. Wang, Z. Yu, H. Xie and R. Wang, Electrochim. Acta. 55 (2010) 2414
[51] M. Kunduraci, J. F. Al-Sharab and G. G. Amatucci, Chem. Mater. 18 (2006) 3585
[52] M. Kunduraci and G. G. Amatucci, J. Power Sources 165 (2007) 359
[53] R. santhanam and B. Rambabu, J. Power Sources 195 (2010) 5442
[54] X.Y. Feng, C. Shen, X. Fang, C.H. Chen, Journal of Alloys and Compounds 509 (2011) 3623
[55] Y. Idemoto, H. Narai and N. Koura, J. Power Sources 119 (2003) 125
[56] K. M. Shaju and P. G. Bruce, Dalton Trans. 37 (2008) 5471
[57] T. F. Yi and Y. R. Zhu, Electrochim. Acta. 53 (2008) 3120
[58] X. Wu and S. B. Kim, J. Power Sources 109 (2002) 53
[59] M. I. Zaki, M. A. Hasan, L. Pasupulety and K. Kumari, Thermochim. Acta 2 (1997) 171
[60] X. Fang, N. Ding, X.Y. Feng, Y. Lu and C.H. Chen, Electrochim. Acta. 54 (2009) 7471
[61] J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang and Y. K. Sun, Chem. Mater. 16 (2004) 906
[62] M. Kunduraci and G. G. Amatucci, J. Electrochem. Soc. 153 (2006) A1345
[63] Lithium Ion Batteries Fundamentals and Performance, M. Wakihara and O. Yamamoto, 1998, p184~187
[64] Lithium Ion Batteries Fundamentals and Performance, M. Wakihara and O. Yamamoto, 1998, p190
[66] Y. R. Jhan, J. G. Duh and S. Y. Tsai, Diamond and Related Materials, 20 (2011) 413
[67] E. Ferg, R. J. Gummov, A. de Kock and M. M. Thackray, J. Electrochem. Soc. 141 (1994) L147
[68] T. Ohzuku, A. Ueda and N. Yamamoto, J. Electrochem. Soc. 142 (1995) 1431
[69] S. Scharner, W. Weppner and P. B. Schmid, J. Electrochem. Soc. 146 (1999) 857
[70] V. R. Albertini, P. Perfetti, F. Ronci, P. Reale and B. Scrosati, Appl. Phys. Lett. 79 (2001) 27
[71] F. Ronci, P. Reale, B. Scrosati, S. Panero, V. R. Albertini, P. Perfetti, M. Michiel and J. M. Merino, J. Phys. Chem. B 106 (2002) 3082
[72] K. Ariyoshi, R. Yamato and T. Ohzuku, Electrochim. Acta. 51 (2005) 1125
[73] Y. Tang, L. Yang, S. Fang and Z. Qiu, Electrochim. Acta. 54 (2009) 6244
[74] L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu and F. Zhang, J. Mater. Chem. 21 (2011) 761
[75] S. Ji, J. Zhang, W. Wang, Y. Huang, Z. Feng, Z. Zhang and Z. Tang, Materials Chemistry and Physics 123 (2010) 510
[76] H. Shiiba, M. Nakayama and M. Nogami, Solid State Ionics 181 (2010) 994
[77] B. Tian, H. Xiang, L. Zhang, Z. Li and H. Wang, Electrochim. Acta. 55 (2010) 5453
[78] S. Huang, Z. Wen, X. Zhu and Z. Lin, J. Power Sources 165 (2007) 408
[79] T. F. Yi, L. J. Jiang, J. Shu, C. B. Yue, R. S. Zhu and H. B. Qiao, Journal of Physics and Chemistry of Solids 71 (2010) 1236
[80] S. Huang, Z. Wen, X. Zhu and Z. Gu, Electrochem. Commun. 6 (2004) 1093
[81] L. Cheng, J. Yan, G. N. Zhu, J. Y. Luo, C. X. Wang and Y. Y. Xia, J. Mater. Chem. 20 (2010) 595
[82] U. Lafont, C. Locati and E.M. Kelder, Solid State Ionics 177 (2006) 3023
[83] X. Fang, Y. Lu, N. Ding, X.Y. Feng, C. Liu and C.H. Chen, Electrochim. Acta. 55 (2010) 832
[84] X. R. Ye, D. Z. Jia, J. Q. Yu, X. Q. Xin and Z. Xue, Adv. Mater. 11 (1999) 941
[85] A. J. Patil, M. H. Shinde and H. S. Potdar, Mater. Chem. Phys. 68 (2001) 7
[86] S. Bach, J. P. Pereira-Ramos and N. Baffier, J. Power Sources 81-82 (1999) 273
[87] S. Batch, J. P. Pereira-Ramos and N. Baffier, J. Mater. Chem. 8 (1998) 251
[88] M. Venkateswarlu, C. H. Chen, J. S. Do, C.W. Lin, T. C. Chou and B. J. Hwang, J. Power Sources 146 (2005) 204
[89] Lithium Ion Batteries Fundamentals and Performance, M. Wakihara and O. Yamamoto, 1998, p.5
[90] K. Ariyoshi, R. Yamato, Y. Makimura, T. Amazutsumi, Y. Maeda and T. Ohzuku, Electrochemistry 76 (2008) 46
[91] J. H. Kim, S. T. Myung and Y. K. Sun, Electrochim. Acta. 49 (2004) 219
[92] R. Alcantara, M. Jaraba, P. Lavela, J. L. Trado, E. Zhecheva and R. Stoyanova, Chem. Mater. 16 (2004) 1573
[93] Y. Idemoto, H. Narai and N. Koura, J. Power Sources, 119 (2003) 125
[94] M. Kunduraci and G. G. Amatucci, Electrochim. Acta. 53 (2008) 4193
[95] X. Li, M. Qu and Z. Yu, J. Alloys and Compounds 487 (2009) L12
[96] Y. Hao, Q. Lai, Z. Xu, X. Liu and X. Ji, Solid State Ionics 176 (2005) 1201
[97] R. B. Khomane, A. S. Prakash, K. Ramesha and M. Sathiya, Materials Research Bulletin 46 (2011) 1139
[98] G. Wang, J. Xu, M. Wen, R. Cai, R. Ran and Z. Shao, Solid State Ionics 179 (2008) 946
[99] K. C. Hsiao, S. C. Liao and J. M. Chen, Electrochim. Acta. 53 (2008) 7242
[100] C. H. Jiang, Y. Zhou, I. Honma, T. Kudo and H. S. Zhou, Electrochim. Acta. 166 (2007) 514
[101] X. Li, M. Qu and Z. Yu, Solid State Ionics 181 (2010) 635
[102] T. Yuan, R. Cai, K. Wang, R. Ran, S. Liu and Z. Shao, Ceramics International 35 (2009) 1757
[103] Y. J. Hao, Q. Y. Lai, J. Z. Lu, H. L. Wang, Y. D. Chen and X. Y. Ji, J. Power Sources 158 (2006) 1358
[104] Y. J. Hao, Q. Y. Lai, D. Q. Liu, Z. U. Xu and X. Y. Ji, Materials Chemistry and Physics 94 (2005) 382
[105] S. Y. Yin, L. Song, X. Y. Wang, K. L. Zhang and Y. X. Zhang, Electrochim. Acta. 54 (2009) 5629
[106]E. Matsui, Y. Abe and M. Zaghib, J. Am. Cerm. Soc. 91 (2008) 1522
[107] M. R. Mohammadi and D. J. Fray, J. Sol-Gel Technol, 55 (2010) 19
[108]G. Yan, H. Fang, H. Zhao, G. Li, Y. Yang and L. Li, Journal of Alloys and Compounds 470 (2009) 544
[109] H. Kleykamp, Fusion Engineering and Design, 61 (2002) 361
[110] J. Wolfensite and J. L. Allen, J. Power Sources 180 (2008) 582
[110] X. Li, M. Qu and Z. Yu, J. Alloys and Compounds 487 (2009) L12
[111] B. Tian, H. Xiang, L. Zhang and Z. Li, H. Wang, Electrochim. Acta. 55 (2010) 5453
[113] X. Li, M. Qu, Y. Huai and Z. Yu, Electrochim. Acta. 55 (2010) 2978
[114] J. Goodenough and Y. Kim, Chem. Mater. 22 (2010) 587