研究生: |
鄭至宏 Cheng, Chih Hung |
---|---|
論文名稱: |
微感測器受熱循環負載之有限單元應力分析 Finite Element Stress Analysis of Micro Sensors under Thermal Cycling |
指導教授: |
葉孟考
Yeh, Meng Kao |
口試委員: |
葉銘泉
Yip, Ming-Chuen 蔣長榮 Chiang, Chun-Ron 葉孟考 Yeh, Meng Kao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 微感測器 、加速計 、有限單元分析 、熱應力分析 |
外文關鍵詞: | Micro Sensors, Accelerometer, Finite Element Analysis, Thermal Stress Analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來科技產品逐漸往追求多功能性的目標發展,電子產品由起初較大型超級電腦進展為桌上型、筆記型電腦,近年來更進一步精巧如平板電腦、智慧型手機等手持式裝置,此類裝置內部具有多種不同微型化的智慧感測元件,同時具有高精度與高價格之特點。當電子產品同時追求輕薄短小與高性能時,元件的高密集性將造成熱量的累積,雖然目前在散熱系統上擁有相當多研究與應對,但長期運作下,內部產生升溫情形依然存在,隨溫度變化後,因熱膨脹係數(Coefficient of Thermal Expansion)不匹配而產生應力集中現象。
本研究主要使用有限單元分析進行元件熱應力分析,以加速度計(Accelerometer)為例並結合FR-4印刷電路板(Print Circuit Board)為研究對象,分別研究加速度計受熱負載與熱循環兩種負荷,使用JEDEC規範進行熱循環(Thermal Cycling)分析,探討溫度變化時,感測器內部受熱後應力的變化情形,進一步分析較早破壞處之塑性行為。本研究使用有限元單分析軟體ANSYS,針對JESD22-A104-D規範下的熱循環條件進行模擬,探討不同循環次數之模擬結果,而後改變部分參數,利用電腦模擬多種條件下的溫度循環分析,提供設計上的參考,避免應力對結構產生的破壞,進行更完整的評估。結果顯示本研究之微加速感測器藉由以上分析,在經過多次熱循環後,MEMS結構連接晶片之彈簧結構有較大應力產生,將使結構發生破壞,本研究可對微感測器開發提供相關設計之參考。
In recent years, the electronic products are developed towards light, smaller and multifunctional, such as desktop and laptop computers, as well as the handheld tablet and smart phones. The handheld devices composed of various miniaturized, sophisticated and expensive smart sensors with high-density electronic components, which would cause heat accumulation after operating for a long time. As the temperature changes, the stress concentration would occur due to the mismatch of coefficient of thermal expansion (CTE) between different components.
In this paper, the finite element code ANSYS was used to analyze a micro-sensor, an accelerometer, on FR-4 printed circuit board (PCB) under thermal load and thermal cycling according to JEDEC standards. The results show that after thermal cycling, the spring structure connecting to accelerometer had greater stress which would cause failure. The thickness of the bottom layer in the spring connecting the accelerometer and material constants, such as Young’s modulus, the yield stress and the tangent modulus, were varied to study their effects on the failure behavior of the micro-sensor. These results could be used to evaluate the thermal stresses of different micro sensors under similar conditions in the future.
1. 什麼是MEMS, 電子工程專輯, http://www.eettai wan.com/SEARCH/ ART/MEMS.HTM, 引用時間:2014/10/14.
2. 專家觀點:回顧漫長的MEMS 商用化之路, 電子工程專輯, http://www. eettaiwan.com/ART_8800550087_480102_NT_ddbf57f1.HTM, 引用時間:2014/10/14.
3. 黃子恆,微感測器之掉落衝擊試驗與可靠度評估,國立清華大學動力機械工程學系碩士論文,2013。
4. 史欽泰,我國IC產業的發展史與未來發展,科技發展政策報導,第603~609頁,2001。
5. E. Beyne, “The Rise of the 3rd Dimension for System Integration,” Interconnect Technology Conference,” pp. 1–5, 2006.
6. Y. J. Lee, Y. F. Su, T. Y. Hung, and K. N. Chiang, “Reliability Analysis of 3D IC Integration Packaging under Drop Test Condition,” 7th International Conference on Microsystems, Packaging, Assembly and Circuits Technology (IMPACT), pp. 299–302, 2012.
7. T. Loher, D. Schiitze, W. Christiaens, K. Dhaenens, S. Priyabadini, A. Ostmann and J. Vanfleteren, “Module Miniaturization by ultra thin Package Stacking,” Electronic System-Integration Technology Conference(ESTC), pp. 1-5, 2010。
8. W. H. Chen, H. C. Cheng and H. A. Shen, “An Effective Methodology for Thermal Characterization of Electronic Packaging,” Transactions on Components and Packaging Technologies, vol. 26, pp. 222-232, 2003.
9. W. D. Brown, A. P. Malshe, T. A. Railkar, T. G. Lenihm, J. W. Stone, W. T. Sommers and L. W. Schaper, “Thermal Management Issues and Evaluation of A Novel, Flexible Substrate, 3-Dimensional Packaging Concept,” International Conference on Multichip Modules and High Density Package, pp. 135-140, 1998.
10. A. Metrol, “Thermal Performance Comparison of High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Packages,” Transactions on Components, Packaging, and Manufacturing Technology-Part B, vol. 19, No. 2, pp. 427-443, 1996.
11. R. D. Schueller, “Design Considerations for a Reliability Low Cost Tape Ball Grid Array Package,” The International Journal of Microcircuits and Eletronic Packaging, vol. 19, No. 2, pp. 146-154, 1996.
12. H. Shaukatullah and M. A. Gaynes, “Comparative Evaluatuon of Various Types of Heat Sinks for Thermal Enhancement of Surface Mount Plastic Packages,” The International Journal of Microcircuits and Electronic Packaging, vol. 18.No. 3, pp. 252-259, 1995.
13. D. R. Edwards, M. Hwang and B. trearns, “Thermal Enhancement of Plastic IC Packages,” Transactions on Components, Packaging, and Manufacturing Technology-Part A, vol. 18, No. 4, pp. 723-731, 1995.
14. T. Zhou, M. Hundt and B. Elison, “A Quick Method for Estimating Junction Temperature Profiles in Transient Applications,” International Society Conference on Thermal Phenomena Electronic system, pp. 239-242, 1996.
15. F. Wu, J. Lau and L. K. Chen, “Thermal Evaluation of a Cost-Effective Plastic Ball Grid Array Package-NuBGA,” 47th Electronic Components & Technology Conference, pp. 309-318, 1997.
16. S. Chen, T. K. Lee, S. J. Lee and N. F. Feng, “Solder Joint Thermal Fatigue Analysis of 48-FBGA,” International Conference on Electronics Packaging Technology, pp. 1-4, 26-29 August, 2006.
17. F. X. Che, H. L. Pang and L. H. Xu, “Investigation of IMC Layer Effect on PBGA Solder Joint Thermal Fatigue Reliability,” Electronics Packaging Technology Conference, vol. 2, pp. 427-430, 7-9 December, 2005.
18. G. Gustafsson, I. Guven, V. Kradinov and E. Madenci, “Finite Element Modeling of BGA Packages for Life Prediction,” Electronic Components and Technology Conference, pp. 1059-1063, 21-24 May, 2003.
19. B. Z. Hong and L. G. Burrell, ”Modeling Thermally Induced Viscoplastic Deformation and Low Cycle Fatigue of CBGA Solder Joint in a Surface Mount Package,” Transactions on Components, Packaging, and Manufacturing Technology-Part A, vol. 20, No. 3, pp. 280-285, September, 1997.
20. X. Huang, W. F. Wu and P. L. Chou, ”Fatigue Life and Reliability Prediction of Electronic Packages under Thermal Cycling Conditions through FEM Analysis and Acceleration Models,” 14th International Conference on Electronic Materials and Packaging (EMAP), 2012.
21. S. Park, D. Liu, Y. Kim, H. Lee, and S. Zhang, “Stress Evolution in an Encapsulated MEMS Package due to Viscoelasticity of Packaging Materials,” Electronic Components and Technology Conference (ECTC), pp. 70-75, 2012
22. K. Liu, E. Chen, D. Lee and M. Ma, “Capability Evaluation and Validation of FC Chip Scale Package Structure,” 6th International Conference on Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), pp. 129-132, 2011.
23. R. Zhang, H. Shi, T. Ueda, J. Zhang, Y. Dai, “Thermomechanical Reliability Analysis and Optimization for MEMS Packages With AuSn Solder,” International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE), pp. 794-797, 2012.
24. JEDEC Standard, ”Test Components and Board,” JESD22-B111.
25. JEDEC Standard, ”Temperature Cycling,” JESD22-A104-D.
26. L. T. Nguyen, S. A. Gee, M. R. Johnson, H. E. Grimm, H. Berardi and R. L. Walberg, “Effect of Die Coating, Mold Compounds, and Test Conditions on Temperature Cycling Failures,” Transactions on Components, Packaging, and Manufacturing Technology-Part A, vol. 18, No. 1, pp. 15-22, 1994.
27. E. Suhir, “Predicted Failure Criterion (von-Mises Stress) for Moisture-Sensitivity Plastic Packages,” 45th Electronic Components & Technology Conference, pp. 264-284, 21-24 May, 1995
28. T. Y. Tee, H. S. Ng, Z. Zhong, “Design for Enhanced Solder Joint Reliability of Integrated Passives Device under Board Level Drop Test and Thermal Cycling Test,” Electronics Packaging Technology Conference, pp. 210-216, 2003.
29. R. Darveaux,“ Effect of Simulation Methodology on Solder Joint Crack Growth Correlation,” Electronic Components and Technology Conference, Las Vegas, 2000.
30. ANSYS Release 12.1, ANSYS, Inc., PA, 2009.
31. R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., Wiley, Danvers, 2002.
32. L. J. Segerlind, Applied Finite Element Analysis, 2nd ed., Wiley, New York, 1984.
33. ANSYS User’s Manual, ANSYS Inc.
34. 康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2003。
35. H. Lienhard, A Heat Transfer Textbook, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.
36. Release 10.0 Documentation for ANSYS: Theory Reference, 2005.
37. 徐志銘,電子封裝之熱疲勞壽命模擬與測試,私立逢甲大學航太與系統工程學系碩士論文,2007。
38. 李文正,以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為,國立中央大學機械工程學系碩士論文,2002。
39. J. Chakrabarty, Theory of plasticity, McGraw-Hill, New York, 1987.
40. R. Blish and N. Durrant, “Semiconductor Device Reliability Failure Models,” International SEMATECH, May 31, 2000.
41. S. Ramminger, N. Seliger and G. Wachutka, “Reliability model for Al wire bonds subjected to heel crack failures,” Microelectronics Reliability, vol. 40, pp. 1521-1525, 2000.
42. J. A. Collins, Failure of Materials in Mechanical Design, 2nd ed., Wiley, New York, 1993.
43. The Engineering Toolbox, http://www. engineeringtoolbox.com/linear- expansion-coefficients-d_95.html, 2014/08/18.
44. K. E. Petersen, “Silicon as a MechanicaI Material,” Proceedings of the IEEE, vol. 70, No. 5, 1982.
45. K. L. Lee, H. H. Liu, W. F. Pan, “Fatigue Life Estimation of Thin Fin-pitch Ball Grid Array Subjected to Thermal Cyclic Loading,” Journal of C.C.I.T, vol. 42, No. 1, 2013.
46. PCB測試條件 FPC測試條件-慶聲科技, http://www.kson.com.tw/chinese/ study_15.htm, 引用時間:2014/08/18.
47. ASTM E8M-13a, “Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products,” Annual Book of ASTM Standards, 2013.
48. 賴盈達,鋁合金/碳纖維/聚醚醚銅奈米複材積層板之研製與機械性質探討,國立中山大學機械與機電工程學系碩士論文,2008。
49. http://ednjapan.com/edn/articles/1205/16/news110.html, 引用時間:2014/10/14