簡易檢索 / 詳目顯示

研究生: 李柏威
LI, Bo-Wei.
論文名稱: 一階段濺鍍銅銦鎵硒薄膜太陽能電池: 鈉與硒的效應
One-step sputtering CIGS thin film solar cell: The effects of Na and Se
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 王致喨
Wang, Chih-Liang
謝東坡
HSIEH, Tung-Po
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 45
中文關鍵詞: 太陽能電池銅銦鎵硒一階段濺鍍
外文關鍵詞: Solar cell, CUGS, One step sputtering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單一CIGS靶材濺鍍製程有大面積均勻、不須使用毒性氣體、不須後硒化處理等優點,卻有硒供給不足的問題。 本論文利用雷射加熱的方式,在濺鍍CIGS四元靶材的製程中提供額外的硒氣氛,成功地增加薄膜中的硒含量並得到較大的CIGS晶粒。藉由加入NaF前驅層能夠進一步地增加硒含量、消除薄膜內的深層缺陷,隨著前驅層厚度的增加也會改變吸收層的表面形貌。以此製程能夠以一階段製備吸收層,並達到11.4%的轉換效率。雖然NaF前驅層能夠進一步增加薄膜中的硒含量,卻也讓載子濃度過高,空乏區寬度過窄而無法有效吸收入射光。接著我們探討額外硒供給以及NaF後退火處理的效應,並以額外硒供給搭配NaF後退火處理,成功達到12.3%的光電轉換效率。


    The process of sputtering quaternary-CIGS target is simple and straightforward. It can be used for larger area samples without the need of toxic gas and post-selenization. However, Se loss during the high temperature substrate is the main issue in this process. In this work, we try to increase the selenium supply during the process by heating selenium pellets up with laser, and we can observe larger CIGS grain and higher selenium content in the absorber. By adding NaF precursor , higher selenium content and different morphology is observed. Sodium may also decrease the deep defects in the film. 11.4% can be achieved by NaF precursor and extra selenium supply. NaF precursor can increase the selenium amount in the film, but it also leads to higher carrier concentration and narrow depletion width which give poor absorption of incident light. Finally we discuss the effects of extra selenium supply and NaF post deposition treatment (NaF-PDT). 12.3% can be achieved by NaF-PDT after extra selenium supply

    摘要 目錄 第一章、簡介----------------------1 第二章 文獻回顧------------------3 2.1太陽能電池原理-----------------3 2.2太陽能電池結構-----------------7 2.3銅銦鎵硒薄膜性質---------------10 2.3.1 CuInSe2 的組成以及相圖----10 2.3.2 薄膜缺陷性質---------------11 2.4銅銦鎵硒薄膜內載子復合機制-----14 2.5銅銦鎵硒薄膜製程---------------15 第三章 實驗方法與分析儀器---------21 3.1試片製備-----------------------21 3.2實驗設備-----------------------22 3.3分析儀器-----------------------22 第四章 實驗結果與討論-------------27 4.1.1 As-deposited CIGS-----------27 4.1.2 額外硒補充的CIGS------------28 4.1.3 NaF 前驅層------------------30 4.1.4 NaF後退火處理(NaF Post deposition treatment ,NaF-PDT )---35 第五章、結論----------------------40

    參考文獻
    [1] R.Kamada et al., “New World Record Cu(In,Ga)(Se,S)2 Thin Film Solar Cell Efficiency Beyond 22%,” pp. 3–7, 2016.
    [2] A.Namin, C.Jivacate, D.Chenvidhya, K.Kirtikara, andJ.Thongpron, “Construction of tungsten halogen, pulsed LED, and combined tungsten halogen-LED solar simulators for solar cell i - V characterization and electrical parameters determination,” Int. J. Photoenergy, vol. 2012, no. May 2012, 2012.
    [3] Y.Zhao et al., “A solar photovoltaic system with ideal efficiency close to the theoretical limit,” Opt. Express, vol. 20, no. S1, p. A28, 2012.
    [4] S.-Y.Kuo, M.-Y.Hsieh, D.Hsieh, H.Kuo, C.Chen, andF.Lai, “Device Modeling of the Performance of Cu(In,Ga)Se 2 Solar Cells with V-Shaped Bandgap Profiles,” Int. J. Photoenergy, vol. 2014, no. May 2014, pp. 1–6, 2014.
    [5] H.Chia-Hao et al., “Na-induced efficiency boost for Se-deficient Cu(In,Ga)Se2 solar cells,” Prog. Photovoltaics Res. Appl., vol. 23, no. 11, pp. 1621–1629, Feb.2015.
    [6] K.-J.Hsiao, J.-D.Liu, H.-H.Hsieh, andT.-S.Jiang, “Electrical impact of MoSe2 on CIGS thin-film solar cells,” Phys. Chem. Chem. Phys., vol. 15, no. 41, p. 18174, 2013.
    [7] M.Bär et al., “Determination of the band gap depth profile of the penternary Cu(In(1-x)Gax)(SySe(1-y))2chalcopyrite from its composition gradient,” J. Appl. Phys., vol. 96, no. 7, pp. 3857–3860, 2004.
    [8] A.Rockett et al., Near-surface defect distributions in Cu (In, Ga) Se2, vol. 431. 2003.
    [9] S.Zhang, S. H.Wei, A.Zunger, andH.Katayama-Yoshida, “Defect physics of the chalcopyrite semiconductor,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 57, no. 16, pp. 9642–9656, 1998.
    [10] J.Pohl andK.Albe, “Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 87, no. 24, pp. 1–16, 2013.
    [11] C.Rincon andR.Marquez, “Defect physics of the CuInSe 2 chalcopyrite semiconductor,” J. Phys. Chem. Solids, vol. 60, pp. 1865–1873, 1999.
    [12] S.Siebentritt, M.Igalson, C.Persson, andS.Lany, “The electronic structure of chalcopyrites - Bands, point defects and grain boundaries,” Prog. Photovoltaics Res. Appl., vol. 18, no. 6, pp. 390–410, 2010.
    [13] U.Rau andH.-W.Schock, Electronic Properties of Cu(In,Ga)Se-2 Heterojunction Solar Cells-Recent Achievements, Current Understanding, and Future Challenges, vol. 69. 1999.
    [14] S.Lany andA.Zunger, “Light- and bias-induced metastabilities in Cu(In,Ga)Se2based solar cells caused by the (VSe-VCu) vacancy complex,” J. Appl. Phys., vol. 100, no. 11, 2006.
    [15] U.Rau et al., “Impact of Na and S incorporation on the electronic transport mechanisms of Cu(In, Ga)Se2solar cells,” Solid State Commun., vol. 107, no. 2, pp. 59–63, 1998.
    [16] S. H.Wei, S. B.Zhang, andA.Zunger, “Effects of Na on the electrical and structural properties of CuInSe2,” J. Appl. Phys., vol. 85, no. 10, pp. 7214–7218, 1999.
    [17] H.Ruckh, D.Schmid, M.Kaiser, R.Schaffler, T.Walter, andH.-W.Schock, Influence of substrates on the electrical properties of Cu(In,Ga)Se 2 thin films, vol. 41. 1995.
    [18] B. L.Kronik, D.Cahen, andH. W.Schock, “Effects of Sodium on Polycrystalline Cu(In,Ga)Se 2 and Its Solar Cell Performance**,” Adv. Mater., vol. 10, no. 1, pp. 31–36, 1998.
    [19] S. H.Wei, S. B.Zhang, andA.Zunger, “Effects of Ga addition to CuInSe2on its electronic, structural, and defect properties,” Appl. Phys. Lett., vol. 72, no. 24, pp. 3199–3201, 1998.
    [20] P.Jackson, R.Wuerz, D.Hariskos, E.Lotter, W.Witte, andM.Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. Status Solidi - Rapid Res. Lett., vol. 10, no. 8, pp. 583–586, 2016.
    [21] A.Romeo et al., “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics Res. Appl., vol. 12, no. 23, pp. 93–111, 2004.
    [22] R.Ingrid et al., “19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor,” Prog. Photovoltaics Res. Appl., vol. 16, no. 3, pp. 235–239, Feb.2008.
    [23] D. S.Albin, G. D.Mooney, A.Duda, J.Tuttle, R.Matson, andR.Noufi, “Enhanced grain growth in polycrystalline CuInSe2 using rapid thermal processing,” Sol. Cells, vol. 30, no. 1–4, pp. 47–52, 1991.
    [24] T.Dullweber, G.Hanna, U.Rau, andH. W.Schock, “New approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors,” Sol. Energy Mater. Sol. Cells, vol. 67, no. 1–4, pp. 145–150, 2001.
    [25] W.Wolfram et al., “Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells,” Prog. Photovoltaics Res. Appl., vol. 23, no. 6, pp. 717–733, Mar.2014.
    [26] S. P.Grindle, C. W.Smith, andS. D.Mittleman, “Preparation and properties of CuInS2thin films produced by exposing sputtered Cu-In films to an H2S atmosphere,” Appl. Phys. Lett., vol. 35, no. 1, pp. 24–26, 1979.
    [27] S.Seeger andK.Ellmer, “Reactive magnetron sputtering of CuInS2absorbers for thin film solar cells: Problems and prospects,” Thin Solid Films, vol. 517, no. 10, pp. 3143–3147, 2009.
    [28] N.-M.Park et al., “Effect of Se flux on CuIn1-xGaxSe2 film in reactive sputtering process,” Prog. Photovoltaics Res. Appl., vol. 20, no. 7, pp. 899–903, Oct.2011.
    [29] L.Ouyang et al., “Cu(In,Ga)Se<inf>2</inf> solar cell with 16.7% active-area efficiency achieved by sputtering from a quaternary target,” Phys. Status Solidi Appl. Mater. Sci., vol. 212, no. 8, pp. 1774–1778, 2015.
    [30] D.Cahen andR.Noufi, “Defect chemical explanation for the effect of air anneal on CdS/CuInSe2solar cell performance,” Appl. Phys. Lett., vol. 54, no. 6, pp. 558–560, 1989.
    [31] C. H.Hsu, W. H.Ho, S. Y.Wei, andC. H.Lai, “Over 14% Efficiency of Directly Sputtered Cu(In,Ga)Se2Absorbers without Postselenization by Post-Treatment of Alkali Metals,” Adv. Energy Mater., vol. 7, no. 13, pp. 2–9, 2017.

    QR CODE