簡易檢索 / 詳目顯示

研究生: 林孟賢
Lin, Meng-Hsien
論文名稱: 電漿改質自組裝分子膜於微影化學圖形與製作奈米粒子三維電漿子晶體之應用
Plasma Modification of Self-Assembled Monolayers for Chemical Patterning and Fabrication of Large-Area 3D Plasmonic Supercrystals
指導教授: 果尚志
Gwo, Shangjr
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 132
中文關鍵詞: 負折射率超穎材料奈米粒子表面電漿表面改質
外文關鍵詞: NEGATIVE REFRACTIVE-INDEX, JANUS PARTICLES, METAMATERIALS, NANOPARTICLES, PLASMON, SURFACE MODIFICATION
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了將元件體積微型化或執行更為精密的功能,奈米科技已然成為當前主流的發展技術之一,而奈米圖案成像技術與奈米結構製造技術亦將隨著各種功能元件的製作或整合需求而更加快速發展,以應用於奈米電子、奈米光電元件、奈米機電、分子電子元件、資料儲存、感測器、生物晶片及超穎材料等重要領域。因此本研究提供了一種在表面製造圖形化官能基的有效方法,用以提供有別傳統光學微影且不侷限於光學繞射極限的技術。由此技術我們更延伸出一種用於製作三維金、銀奈米粒子超晶格薄膜的方法,由於奈米粒子具有獨特的表面電漿子特質,因此奈米粒子超晶格薄膜結構的製造方法在未來設計電漿子超穎材料領域將預期能發揮重要關鍵作用。
    在研究執行中主要是利用高活性電漿與局部區域自組裝單分子膜(SAMs)接觸產生化學官能基轉變,用以達成在表面製造出圖形化官能基。而使電漿與局部SAMs接觸的調控方式則是利用聚甲氧基矽氧烷(PDMS)製造接觸式的孔洞遮罩或擁有流道溝槽的”圖章”,而由PDMS所製造出的表面化學圖形化尺度可橫跨公分至奈米,而其最小解析線寬將可達50奈米。我們利用一系列廣泛的分析技術來觀測研究表面局部的官能基化學轉變特性,其中包括水接觸角量測,同步輻射X-ray光電子能譜(XPS),同步輻射掃描式光電子能譜(SPEM),熱場發掃描式電子顯微鏡(FE-SEM)及掃描探針表面電位影像(SKPM)。尤其XPS與SPEM的影像能譜,更可有效的分析出局部圖形化區域的官能基相異性及電漿改質官能基轉換的機制。
    接著利用電漿改質分子膜的技術,我們延伸出一種簡單且有效的方法用於製作大面積(>平方公分)的三維金、銀奈米粒子超晶格薄膜,在此法中,使用被硫醇包覆的金銀奈米膠體粒子,藉由電漿改質處理使其具有雙面神(Janus)奈米粒子的特性(一面為溶液相斥性一面為溶液相親性),可達到逐層操控堆疊奈米粒子的目的。我們更進一步的驗證此薄膜在同層粒子(橫向平面)及層與層之間(垂直縱向)都具有三維電漿子晶體的強近場耦合現象。與傳統利用聚合相異電介質交互堆疊的逐層堆疊方式相比,這個方法能夠明顯的藉由光譜觀察到層數與縱向(Z向)多重耦合模態的關係。我們發覺在反射光譜中被吸收波段波谷(相關於縱向耦合模態)與層數間的關係能夠說明在縱向方向具有一個電漿子法布立–培若奈米共振腔(plasmonic Fabry-Pérot nanocavity)。而此電漿子晶體結構可以在特定調控的波段產生電漿子駐波,而且可調控的電漿子頻率具有橫跨可見光至近紅外光範圍的能力。


    Nanotechnology has been developed as a reliable technology for producing minimal components to perform more precise functions. In particular, the availability of nanolithography and nanostructure fabricating processes is important in the fields of photonics, electronics, biotechnology, and metamaterial. In our research, we present a generic and efficient chemical patterning method, compared with conventional photolithography this approach is without diffraction limit. Base on this approach, we expand a method for synthesizing three-dimensional (3D) gold and silver nanoparticle supercrystal films. Since nanoparticles have unique properties of surface plasmon, this technology will offer a pathway to designer plasmonic metamaterials.
    We fabricate chemical pattern based on local plasma-induced conversion of surface functional groups on self-assembled monolayers. Here, spatially controlled plasma exposure is realized by elastomeric poly(dimethylsiloxane) (PDMS) contact masks or channel stamps with feature sizes ranging from nanometer, micrometer, to centimeter, and an achievable resolution is down to the 50 nm range. This chemical conversion method has been comprehensively characterized by a set of techniques, including contact angle measurements, X-ray photoelectron spectroscopy (XPS), scanning photoelectron microscopy (SPEM), scanning electron microscopy (SEM), and scanning Kelvin probe microscopy (SKPM). In particular, XPS and SPEM can be used to distinguish regions of different surface functionalities and elucidate the mechanism of plasma-induced chemical conversion.
    Based on plasma-induced conversion, we expand a simple and efficient method for synthesizing large-area (>cm2), three-dimensional (3D) gold and silver nanoparticle supercrystal films. In this approach, Janus nanoparticle (top face solvent-phobic and bottom face solvent-philic) films with an arbitrary number of close-packed nanoparticle monolayers can be formed by using layer-by-layer (LbL) assembly from suspensions of thiolate-passivated gold or silver colloids. Furthermore, we demonstrate that these films can act as true 3D plasmonic crystals with strong transverse (intralayer) and longitudinal (interlayer) near-field coupling. In contrast to conventional polyelectrolyte-mediated LbL assembly processes, this approach allows multiple longitudinal coupling modes with a conspicuous spectral dependence on the layer number. We have found a universal scaling relation between the spectral position of the reflectance dips related to the longitudinal modes and the layer number. This relation can be understood by the presence of a plasmonic Fabry-Pérot nanocavity along the longitudinal direction, allowing the formation of standing plasmon waves under plasmon resonance conditions. The realization of 3D plasmonic coupling enables broadband tuning of collective plasmon response in a wide spectral range (visible and near-infrared) and a key pathway to designer plasmonic metamaterials.

    Table of Contents 摘要 ...................................................................................................... 1 Abstract ................................................................................................ 3 Table of Contents ................................................................................. 5 List of Figures ...................................................................................... 8 Chapter 1: Introduction ...................................................................... 1 1.1 Chemical Patterning by Nanolithography ................................... 1 1.1.1 Prior Approach of Fabricating Chemical Pattern ............ 2 1.1.2 Microcontact Electrochemical Conversion (MEC) ............ 9 1.1.3 Microchannel-Flowed Plasma (□CFP) ............................. 12 1.2 Noble Mental Nanoparticle Superlattices .................................. 14 1.2.1 The Plasmonic Property of Noble Mental Nanoparticle ... 18 1.2.2 Two-Dimensional (2D) Gold and Silver Nanoparticle Superlattices ..................................................................... 33 1.2.3 Three-Dimensional (3D) Gold and Silver Nanoparticle Superlattices ..................................................................... 40 1.3 Fabrication of Close-Packed Nanoparticle Arrays ..................... 42 1.3.1 Fabricating Nanoparticle Arrays by □CFP ........................ 43 1.3.2 Fabricating Nanoparticle Arrays by Lithography .............. 44 1.3.3 Fabricating Functional Structure by Nanoparticles ........... 45 Chapter 2: Preparation of Experimental Sample and Utilized Technology ....................................................................... 46 2.1 Sample Preparation for □CFP ..................................................... 46 2.1.1 Fabrication of PDMS Microchannel Stamps ..................... 46 2.1.2 Fabrication of PDMS Sub-Microchannel Stamps .............. 47 2.1.3 Fabrication of PDMS Nanochannel Stamps ...................... 49 2.1.4 Adsorption of Octadecyltrichlorosilane (OTS) Monolayer ... .............................................................................................. 50 2.2 Sample Preparation for Nanoparticle Superlattices ..................... 51 2.2.1 Synthesis of Colloidal Gold Nanoparticles (AuNPs) ......... 52 2.2.2 Synthesis of Colloidal Silver Nanoparticles (AgNPs) ........ 53 2.2.3 Synthesis of Thiolate-Passivated Gold Nanoparticles ........ 54 2.2.4 Synthesis of Thiolate-Passivated Silver Nanoparticles…... 54 Chapter 3: Experimental Section ....................................................... 56 3.1 Experimental Instruments ............................................................ 56 3.1.1 Field-Emission Scanning Electron Microscopy (SEM) ….. 56 3.1.2 Transmission Electron Microscopy (TEM) ......................... 57 3.1.3 Scanning Probe Microscopy (SPM) .................................... 58 3.1.4 Synchrotron-Based X-ray Photoelectron Spectroscopy (XPS) and Scanning Photoelectron Microscopy (SPEM) ............. 59 3.1.5 Synchrotron-Based Specular X-ray Reflectivity (SXR) ...... 61 3.1.6 Synchrotron-Based Grazing Incidence Small Angle X-ray Scattering (GISAXS) .......................................................... 62 3.1.7 Reactive Ion Etching (RIE) ................................................. 63 3.1.8 Plasma Generator ................................................................. 64 3.1.9 Optical Measurement Setup.................................................. 65 3.2 Selective Surface Chemical Modification Based on □CFP .......... 66 3.2.1 Plasma-Induced Surface Chemical Modification ................ 67 3.2.2 Grafting of 3-AminoPropylTriMethoxySilane layer ........... 68 3.2.3 Adsorption of Gold Nanoparticles ....................................... 68 3.3 Plasma-Assisted Layer-by-Layer Assembled Superlattices ......... 69 3.3.1 Fabrication of Monolayer Nanoparticle Superlattices by Dip Coating ............................................................................... 69 3.3.2 Creation of Janus Nanoparticles by Plasma-Based Surface Modification ....................................................................... 71 3.3.3 Fabricating Nanoparticle Superlattices of Controllable Layer Numbers ............................................................................. 72 Chapter 4: Result and Discussion ....................................................... 77 4.1 Analysis of □CFP-Patterned Surface ............................................ 77 4.1.1 Analysis of Plasma-Induced Chemical Conversion by XPS... ............................................................................................. 78 4.1.2 Analysis of a □CFP-Patterned Surface by SPEM ................ 80 4.1.3 Analysis of a □CFP-Patterned Surface by SEM and SKPM .. ............................................................................................. 83 4.1.4 Multilength-Scale Chemical Patterning of □CFP ................ 89 4.2 Structure and Plasmonic Properties of Nanoparticle Superlattices . ....................................................................................................... 95 4.2.1 Analysing The Structure of Nanoparticle Superlattices by SEM, SXR and GISAXS ................................................... 95 4.2.2 Analysing The Plasmonic Properties of Nanoparticle Superlattices by Optical Measurements ............................. 99 Chapter 5: Conclusions ...................................................................... 107 Chapter 6: Perspectives ..................................................................... 109 6.1 Plasmonic Subwavelength Waveguides Based on Tunable Nanoparticle Plasmonic Crystals ................................................109 6.2 Surface Enhanced Raman Scattering ..........................................113 Reference ............................................................................................. 117

    Chapter 1

    (1) (a) Huang, Y.; Lieber, C. M. Pure Appl. Chem. 2004, 76, 2051. (b) Lu, W.; Lieber, C. M. Nat. Mater. 2007, 6, 841.
    (2) (a) Wong, S.; Kitaev, V.; Ozin, G. A. J. Am. Chem. Soc. 2003, 125, 15589. (b) Ozin, G. A.; Arsenault, A. C. Nanochemistry: A Chemcal Approach to Nanomaterials; The Royal Society of Chemistry: Cambridge, U.K, 2005.
    (3) (a) Tao, A. R.; Huang, J. X.; Yang, P. D. Acc. Chem. Res. 2008, 41, 1662. (b) Tao, A. R.; Sinsermsuksakul, P.; Yang, P. D. Nat. Nanotechnology 2007, 2, 435.
    (4) Chen, C.-F.; Tzeng, S.-D.; Chen, H.-Y.; Lin, K.-J.; Gwo, S. J. Am. Chem. Soc. 2008, 130, 824.
    (5) (a) Xia, Y.; Whitesides, G. M. Annu. Rev. Mater. Sci. 1998, 28, 153. (b) Xia, Y. ; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550.
    (6) Smith, R. K.; Lewis, P. A.; Weiss, P. S. Prog. Surf. Sci. 2004, 75, 1.
    (7) Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1171.
    (8) Tarlov, M. J.; Burgess, D. R. F.; Gillen, G. J. Am. Chem. Soc. 1993, 115, 5305.
    (9) Dressick, W. J.; Calvert, J. M. Jpn. J. Appl. Phys. 1993, 32, 5829.
    (10) Friebel, S.; Aizenberg, J.; Abad, S.; Wiltzius, P. Appl. Phys. Lett. 2000, 77, 2406.
    (11) del Campo, A.; Boos, D.; Spiess, H. W.; Jonas, U. Angew. Chem. Int. Ed. 2005, 44, 4707.
    (12) Sugimura, H.; Hong, L.; Lee, K.-H. Jpn. J. Appl. Phys. 2005, 44, 5185.
    (13) Anderson, M. E.; Srinivasan, C.; Hohman, J. N.; Carter, E. M.; Horn, M. W.; Weiss, P. S. Adv. Mater. 2006, 18, 3258.
    (14) Kim, Y.-J.; Lee, K.-H.; Sano, H.; Han, J.; Ichii, T.; Murase, K.; Sugimura, H. Jpn. J. Appl. Phys. 2008, 47, 307.
    (15) Lercel, M. J.; Craighead, H. G.; Parikh, K.; Seshadri, K.; Allara, D. L. Appl. Phys. Lett. 1996, 68, 1504.
    (16) Gölzhäuser, A.; Eck, W.; Geyer, W.; Stadler, V.; Weimann, T.; Hinze, P.; Grunze, M. Adv. Mater. 2001, 13, 806.
    (17) Klinov, D.; Atlasov, K.; Kotlyar, A.; Dwir, B.; Kapon, E. Nano Lett. 2007, 7, 3583.
    (18) (a) Sugimura, H.; Nakagiri, N. J. Am. Chem. Soc. 1997, 119, 9226–9229. (b) Sugimura, H.; Hanji, T.; Hayashi, K.; Takai, O. Adv. Mater. 2002, 14, 524.
    (19) (a) Maoz, R.; Cohen, S. R.; Sagiv, J. Adv. Mater. 1999, 11, 55. (b) Hoeppener, S; Maoz, R; Cohen, S. R.; Chi, L.; Fuchs, H.; Sagiv, J. Adv. Mater. 2002, 14, 1036.
    (20) Fresco, Z. M.; Fréchet, J. M. J. J. Am. Chem. Soc. 2005, 127, 8302.
    (21) Kumar, A.; Whitesides, G. M. Appl. Phys. Lett. 1993, 63, 2002.
    (22) Mrksich, M.; Whitesides, G. M. Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 55.
    (23) Turchanin, A.; Tinazli, A.; El-Desawy, M.; Großmann, H.; Schnietz, M.; Solak, H. H.; Tampé, R.; Gölzhäuser, A. Adv. Mater. 2008, 20, 471.
    (24) Ludden, M. J. W.; Li, X.; Greve, J.; van. Amerongen, A.; Escalante, M.; Subramaniam, V.; Reinhoudt, D. N.; Huskens, J. J. Am. Chem. Soc. 2008, 130, 6964.
    (25) Aizenberg, J.; Braun, P. V.; Wiltzius, P. Phys. Rev. Lett. 2000, 84, 2997.
    (26) Jonas, U.; del Campo, A.; Krüger, C.; Glasser, G.; Boos, D. Proc. Natl. Acad. Sci., U.S.A. 2002, 99, 5034.
    (27) Liu, S.; Maoz, R.; Sagiv, J. Nano Lett. 2004, 4, 845.
    (28) Maury, P.; Escalante, M.; Reinhoudt, D. N.; Huskens, J. Adv. Mater. 2005, 17, 2718.
    (29) Chen, C.-F., Tzeng, S.-D.; Lin, M.-H.; Gwo, S. Langmuir 2006, 22, 7819.
    (30) (a) Ma, L.-C.; Subramanian, R.; Huang, H.-W.; Ray, V.; Kim, C.-U.; Koh, S. J. Nano Lett. 2007, 7, 439. (b) Huang, H.-W.; Bhadrachalam, P.; Ray, V.; Koh, S. J. Appl. Phys. Lett. 2008, 93, 073110.
    (31) Qin, D.; Xia, Y.; Xu, B.; Yang, H.; Zhu, C.; Whitesides, G. M. Adv. Mater. 1999, 11, 1433.
    (32) (a) Aizenberg, J.; Black, A. J.; Whitesides, G. M. Nature 1999, 398, 495. (b) Aizenberg, J.; Black, A. J.; Whitesides, G. M. J. Am. Chem. Soc. 1999, 121, 4500.
    (33) (a) Briseno, A. L.; Roberts, M.; Ling, M.-M.; Moon, H.; Nemanik, E. J.; Bao, Z. J. Am. Chem. Soc. 2006, 128, 3880. (b) Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. Nature 2006, 444, 913.
    (34) Zhou, C.; Nagy, G.; Walker, A. V. J. Am. Chem. Soc. 2005, 127, 12160.
    (35) Kim, E.; Xia, Y.; Whitesides, G. M. Nature 1995, 376, 581−584.
    (36) Delamarche, E.; Bernard, A.; Schmid, H.; Bietsch, A.; Michel, B.; Biebuyck, H. Science 1997, 276, 779−781.
    (37) Delamarche, E.; Bernard, A.; Schmid, H.; Bietsch, A.; Michel, B.; Biebuyck, H. J. Am. Chem. Soc. 1998, 120, 500−508.
    (38) Kenis, P. J. A.; Ismagilov, R. F.; Whitesides, G. M. Science 1999, 285, 83−85.
    (39) Kenis, P. J. A.; Ismagilov, R. F.; Takayama, S.; Whitesides, G. M.; Li, S.; White, H. S. Acc. Chem. Res. 2000, 33, 841−847.
    (40) Langowski, B. A.; Uhrich, K. E. Langmuir 2005, 21, 10509−10514.
    (41) Julthongpiput, D.; Fasolka, M.J.; Zhang, W.H.; Nguyen, T.; Amis, E. J. Nano Lett. 2005, 5, 1535−1540.
    (42) Sharpe, R. B. A.; Burdinski, D.; Huskens, J.; Zandvliet, H. J. W.; Reinhoudt, D. N.; Poelsema, B. J. Am. Chem. Soc. 2005, 127, 10344.
    (43) M. H. Lin, H. Y. Chen, and S. Gwo, J. Am. Chem. Soc. 132, 11259
    (2010).
    (44) Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).
    (45) Su, K.-H., Wei, Q.-H., Zhang, X., Mock, J. J., Smith, D. R. & Schultz, S.; Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087−1090 (2003).
    (46) Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899−903 (2004).
    (47) Jain, P. K., Huang, W. & El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 7, 2080−2088 (2007).
    (48) Yang, S.-C., Kobori, H., He, C.-L., Lin, M.-H., Chen, H.-Y., Li, C., Kanehara, M., Teranishi, T. & Gwo, S. Plasmon hybridization in individual gold nanocrystal dimers: Direct observation of bright and dark modes. Nano Lett., vol.10, 632−637 (2010).
    (49) Tao, A., Sinsermsuksakul, P. & Yang, P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotechnol. 2, 435−440 (2007).
    (50) Tao, A. R., Ceperley, D. P., Sinsermsuksakul, P., Neureuther, A. R. & Yang, P. Self-organized silver nanoparticles for three-dimensional plasmonic crystals. Nano Lett. 8, 4033−4038 (2008)
    (51) H.Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings ( Springer, Berlin, 1998 )
    (52) A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Reports, 408, 131( 2005 )
    (53) R. W. Wood , Philos. Mag. 4, 396 (1902).
    (54) H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, Appl. Phys. Lett., 83( 22 ), 4625( 2003 )
    (55) J. Tiggesbaumker, L. Koller, H. O. Lutz, and K. H. Meiwesbroer, Chem. Phys. Lett., 190, 42( 1992 )
    (56) J. Tiggesbaumker, L. Koller, K. H. Meiwesbroer, and A. Liebsch, Phys. Rev. A: At., Mol. Opt. Phys., 48, R1749( 1993 )
    (57) A. Liebsch, Phys. Rev. B: Condens Matter, 48, 11317( 1993 )
    (58) U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science 25, New York, Springer-Verlag, 1995, 50
    (59) a) D. D. Evanoff, Jr., G. Chumanov, J. Phys. Chem. B, 108, 13957 ( 2004 ); b) K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem.B, , 107, 668 –677( 2003 ).
    (60) S. Lal, S. Link and N. J. Halas, Nature Photonics, 1, 641( 2007 )
    (61) S. A. Maier, H. A. Atwater, Journal of Applied Phyiscs, 98, 011101 (2005)
    (62) M. Faraday, Phil. Trans. Roy. London, 147, 145( 1857 )

    (63) B. V. Derjaguin and L. D. Laudau, Acta Physicochimica( USSR ), 14, 633( 1941 )
    (64) E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam( 1948 )
    (65) W. B. Russel, Da. Saville, and W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge, UK( 1989 )
    (66) C. Bohren and D. Huffman, “Absorption and Scattering of Light by Small Particles” (Wiley, New York, 1983).
    (67) S. Link and M. A. El-Sayed, J. Phys. Chem. B, 103, 4212( 1999 )
    (68) S. Underwood and P. Mulvaney, Langmuir , 10, 3427(1994 )
    (69) W. Rechberger, A. Hohenau, A. Leitner, J. R. krenn, B. Lamprecht,and F. R. Aussenegg, Optics Communications, 220, 137(2003)
    (70) P. K. Jain, W. Huang and M. A. El-Sayed, Nano Lett., 7, 2080( 2007 )
    (71) (a) Fink, J.; Kiely, C. J.; Bethell, D.; Schiffrin, D. J. Chem. Mater. 1998,10, 922-926. (b) Motte, L.; Pileni, M. P. J. Phys. Chem. B 1998, 102,4104-4109. (c) Martin, J. E.; Wilcoxon, J. P.; Odinek, J.; Provencio, P.J. Phys. Chem. B 2000, 104, 9475-9486. (d) Lin, X. M.; Jaeger, H. M.;Sorenson, C. M.; Klabunde, K. J. J. Phys. Chem. B 2001, 105, 3353-3357.
    (72) (a) Badia, A.; Singh, S.; Demers, L.; Cuccia, L.; Brown, G. R.; Lennox,R. B. Chem.-Eur. J. 1996, 2, 359-363. (b) Badia, A.; Cuccia, L.; Demers,L.; Morin, F.; Lennox, R. B. J. Am. Chem. Soc. 1997, 119, 2682-2692.
    (73) Zhao, L.; Kelly, K. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 7343-7350.
    (74) Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824□830.
    (75) Maier, S. A.; Atwater, H. A. J. Appl. Phys. 2005, 98, 011101.
    (76) Wang, H.; Brandl, D. W.; Nordlander, P.; Halas, N. J. Acc. Chem. Res. 2007, 40, 53□62.
    (77) Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K. Science 2004, 305, 788□792.
    (78) Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D. A.; Bartal, G.; Zhang, X. Nature 2008, 455, 376□379.
    (79) Liu, N.; Guo, H. C.; Fu, L. W.; Kaiser, S.; Schweizer, H.; Giessen, H. Nat. Mater. 2008, 7, 31□37.
    (80) Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Science 1997, 277, 1978□1981.
    (81) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545□610.
    (82) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418□2421.
    (83) Wong, S.; Kitaev, V.; Ozin, G. A. J. Am. Chem. Soc. 2003, 125, 15589□15598.
    (84) Nakanishi, H.; Bishop, K. J. M.; Kowalczyk, B.; Nitzan, A.; Weiss, E. A.; Tretiakov, K. V.; Apodaca, M. M.; Klajn, R.; Stoddart, J. F.; Grzybowski, B. A. Nature 2009, 460, 371□375.
    (85) Baker, J. L.; Widmer-Cooper, A.; Toney, M. F.; Geissler, P. L.; Alivisatos, A. P. Nano Lett. 2010, 10, 195□201.
    (86) Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. Science 2003, 302, 419□422.
    (87) Su, K.-H.; Wei, Q.-H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett. 2003, 3, 1087□1090.
    (88) Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Nano Lett. 2004, 4, 899□903.
    (89) Jain, P. K.; Huang, W.; El-Sayed, M. A. Nano Lett. 2007, 7, 2080□2088.
    (90) Yang, S.-C.; Kobori, H.; He, C.-L.; Lin, M.-H.; Chen, H.-Y.; Li, C.; Kanehara, M.; Teranishi, T.; Gwo, S. Nano Lett. 2010, 10, 632□637.
    (91) Tao, A.; Sinsermsuksakul, P.; Yang, P. Nat. Nanotechnol. 2007, 2, 435□440.
    (92) Chen, C.-F.; Tzeng, S.-D.; Chen, H.-Y.; Lin, K.-J.; Gwo, S. J. Am. Chem. Soc. 2008, 130, 824□826.
    (93) Tao, A. R.; Ceperley, D. P.; Sinsermsuksakul, P.; Neureuther, A. R.; Yang, P. D. Nano Lett. 2008, 8, 4033□4038.
    (94) Talapin, D. V. ACS Nano 2008, 2, 1097□1100.
    (95) Kotov, N. A.; Dékány, I.; Fendler, J. H. J. Phys. Chem. 1995, 99, 13065□13069.
    (96) Schmitt, J.; Decher, G.; Dressick, W. J.; Brandow, S. L.; Geer, R. E.; Shashidhar, R.; Calvert, J. M. Adv. Mater. 1997, 9, 61□65.
    (97) Brust, M.; Bethell, D.; Kiely, C. J.; Schiffrin, D. J. Langmuir 1998, 14, 5425□5429.

    Chapter 2

    (1) Zailer, I.; Frost, J. E. F.; Chabasseur-Molyneux, V.; Ford, C. J. B.; Pepper, M. Semicond. Sci. Technol. 1996, 11, 1235.
    (2) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J.Chem. Soc., Chem. Commun. 1994, 801-802.
    (3) Brust, M; Walker, M; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801□802.
    (4) Chen, C.-F.; Tzeng, S.-D.; Chen, H.-Y.; Lin, K.-J.; Gwo, S. J. Am. Chem. Soc. 2008, 130, 824□826.
    (5) Hu, Y.; Ge, J.; Lim, D.; Zhang, T.; Yin, Y. J. Solid State Chem. 2008, 181, 1524□1529.
    (6) (a) Turkevich, J; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55.
    (b) Slot, J. W.; Geuze, H. J., Eur. J. of Cell Biol. 1985, 38, 8793.

    Chapter 3

    (1) (a) Klauser, R.; Hong, I.-H., Su, H.-J., Chen, T. T., Gwo, S., Wang, S.-C., Chuang, T.J., Gritsenko, V. A. Appl. Phys. Lett. 2001, 79, 3143. (b) Klauser, R.; Hong, I.-H., Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Tsang, K.-L.; Chuang, T. J.; Wang, S.-C.; Gwo, S.; Zharnikov, M.; Liao, J.-D. Surf. Rev. Lett. 2002, 9, 213.
    (2) de Gennes, P. G. Rev. Mod. Phys. 1992, 64, 645□648.
    (3) Teranishi, T.; Inoue, Y.; Nakaya, M.; Oumi, Y.; Sano, T. J. Am. Chem. Soc. 2004, 126, 9914□9915.
    (4) Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E. J. Mater. Chem. 2005, 15, 3745□3760.
    (5) Roh, K.-H.; Martin, D. C., Lahann, J. Nat. Matter 2005, 4, 759□763.
    (6) Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S. Nano Lett. 2006, 6, 2510□2514.
    (7) Glotzer, S. C.; Solomon, M. J. Nat. Mater. 2007, 6, 557□562.
    (8) Walther, A.; Müller, A. H. E. Soft Matter 2008, 4, 663□668.
    (9) Granick, S.; Jiang, S.; Chen, Q. Phys. Today, 2009, 62, 68□69.
    (10) Ohnuma, A.; Cho, E. C.; Camargo, P. H. C.; Au, L.; Ohtani, B.; Xia, Y. N. J. Am. Chem. Soc. 2009, 131, 1352□1353.
    (11) McConnell, M. D.; Kraeutler, M. J.; Yang, S.; Composto, R. J. Nano Lett. 2010, 10, 603□609.
    (12) Lin, M.-H.; Chen, C.-F.; Shiu, H.-W.; Chen, C.-H.; Gwo, S. J. Am. Chem. Soc. 2009, 131, 10984□10991.

    Chapter 4

    (1) (a) Liao, J.-D.; Wang, M.-C.; Weng, C.-C.; Klauser, R.; Frey, S.; Zharnikov, M.; Grunze, M. J. Phys. Chem. B 2002, 106, 77. (b) Weng, C.-C.; Liao, J.-D.; Wu, Y.-T.; Wang, M.-C.; Klauser, R.; Zharnikov, M. J. Phys. Chem. B 2006, 110, 12523.
    (2) Tatoulian, M.; Bouloussa, O.; Morire, F.; Arefi-Khonsari, F.; Amouroux, J.; Rondelez, F. Langmuir 2004, 20, 10481.
    (3) Langowski, B. A.; Uhrich, K. E. Langmuir 2005, 21, 10509−10514.
    (4) Schmalenberg, K. E.; Buettner, H. M.; Uhrich, K. E. Biomaterials 2004, 25, 1851.
    (5) West, J.; Michels, A.; Kittel, S.; Jacob, P.; Franzke, J. Lab Chip 2007, 7, 981.
    (6) Lahav, M.; Narovlyansky, M.; Winkleman, A.; Perez-Castillejos, R.; Weiss, E. A.; Whitesides G. M. Adv. Mater. 2006, 18, 3174.
    (7) Kim, Y.-J.; Lee, K.-H.; Sano, H.; Han, J.; Ichii, T.; Murase, K.; Sugimura, H. Jpn. J. Appl. Phys. 2008, 47, 307.
    (8) Liu, S.; Maoz, R.; Sagiv, J. Nano Lett. 2004, 4, 845.
    (9) Chen, C.-F., Tzeng, S.-D.; Lin, M.-H.; Gwo, S. Langmuir 2006, 22, 7819.
    (10) Sugimura, H.; Hayashi, K.; Saito, N.; Nakagiri, N.; Takai, O. Appl. Surf. Sci. 2002, 188, 403.
    (11) Ichii, T.; Kukuma, T.; Kobayashi, K.; Yamada, H.; Matsushige, K. Nanotechnology 2004, 15, S30.
    (12) Saito, N.; Wu, Y.; Hayashi, K.; Sugimura, H.; Takai, O. J. Phys. Chem. B 2003, 107, 664.
    (13) Srinivasan, C.; Mullen, T. J.; Hohman, J. N.; Anderson, M. E.; Dameron, A. A.; Andrews, A. M.; Dickey, E. C.; Horn, M. W.; Weiss, P. S. ACS Nano 2007, 1, 191.
    (14) Mrksich, M.; Whitesides, G. M. Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 55.
    (15) Turchanin, A.; Tinazli, A.; El-Desawy, M.; Großmann, H.; Schnietz, M.; Solak, H. H.; Tampé, R.; Gölzhäuser, A. Adv. Mater. 2008, 20, 471.
    (16) Ludden, M. J. W.; Li, X.; Greve, J.; van. Amerongen, A.; Escalante, M.; Subramaniam, V.; Reinhoudt, D. N.; Huskens, J. J. Am. Chem. Soc. 2008, 130, 6964.
    (17) Decher, G. Science 1997, 277, 1232□1237.
    (18) Smith, D. K.; Goodfellow, B; Smilgies, D.-M.; Korgel, B. A. J. Am. Chem. Soc. 2009, 131, 3281□3290.
    (19) Schider, G.; Krenn, J. R.; Hohenau, A.; Ditlbacher, H.; Leitner, A.; Aussenegg, F. R.; Schaich, W. L.; Puscasu, I.; Monacelli, B.; Boreman, G. Phys. Rev. B 2003, 68, 155427.
    (20) Imura, K.; Nagahara, T.; Okamoto, H. J. Chem. Phys. 2005, 122, 154701.
    (21) Payne, E. K.; Shuford, K. L.; Park, S.; Schatz, G. C.; Mirkin, C. A. J. Phys. Chem. B 2006, 110, 2150□2154.
    (22) Khlebtsov, B. N.; Khlebtsov, N. G. J. Phys. Chem. C 2007, 111, 11516□11527.
    (23) Okamoto, H.; Imura, K. Prog. Surf. Sci. 2009, 84, 199□229.
    (24) Miyazaki, H. T.; Kurokawa, Y. Phys. Rev. Lett. 2006, 96, 097401.
    (25) Harris, N.; Arnold, M. D.; Blaber, M. G.; Ford, M. J. J. Phys. Chem. C 2009, 113, 2784□2791.
    (26) Jain, P. K.; Huang, W.; El-Sayed, M. A. Nano Lett. 2007, 7, 2080□2088.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE