研究生: |
黃皇遠 Huang, Huang-Yuan |
---|---|
論文名稱: |
應用訊號注入之無位置感測永磁同步馬達驅動系統 A POSITION SENSORLESS PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE USING SIGNAL INJECTION |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 178 |
中文關鍵詞: | 永磁同步馬達 、換相時刻移位 、弱磁 、數位信號處理器 、無位置感測控制 、初始位置估測 、單方向啟動 、切換式整流器 、隨機脈波寬度調變切換 、振動 |
外文關鍵詞: | permanent-magnet synchronous motor, commutation shift, field-weakening, digital signal processor, sensorless control, initial rotor position estimation, unidirectional starting, switch-mode rectifier, random PWM switching, vibration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一以數位訊號處理器為主具單相切換式整流器前級之無位置感測永磁同步馬達驅動系統。首先,建構一具切換式整流器前級之標準永磁同步馬達驅動系統,並妥善設計其控制機構以得良好之馬達驅動性能及優良之交流入電電力品質,其兩級電力電路之數位控制法則皆以一共同之數位信號處理器實現。接著探究一些影響馬達驅控特性之關鍵事務,包含換相時刻移位、弱磁及直流鏈升壓。特別地,本文提出暫態及穩態弱磁調控策略,以增進永磁同步馬達之高速驅控性能。
接著探究永磁同步馬達脈動轉矩及振動之產生主因,並探究一些既有之脈動轉矩及振動降低策略。並實測觀察所建構永磁同步馬達系統之振動特性,應用隨機切換脈寬調變技巧,使馬達繞組之電流頻譜散亂均勻分佈,有效降低此馬達之振動。
最後,在探究既有主要永磁同步馬達無位置感測之控制技術後,開發一以高頻信號注入為主之無位置感測永磁同步馬達驅動系統,其具有下列特性:(i)應用電壓窄波激磁判別轉子之初始位置以行其單方向啟動;(ii)因精確之轉子絕對位置估測而獲得良好之低速驅控性能;(iii)利用所提之簡易強健控制進一步增進轉子估測位置之動態響應。
This thesis is mainly concerned with the development of a DSP-based position sensorless permanent-magnet synchronous motor (PMSM) drive with single-phase switch-mode rectifier (SMR) front-end. First, a standard SMR-fed PMSM drive is established with the control schemes being designed to yield satisfactory motor driving performance and AC line drawn power quality. The control algorithms of two power stages are realized in a common digital signal processor (DSP). Then the key issues affecting the operation characteristics of PMSM drive are explored and evaluated experimentally, these include commutation shift, field excitation and DC-link voltage boosting, etc. Particularly, the static and dynamic field-weakening control approaches are proposed to enhance the PMSM performance under higher speed.
Next, the possible origins of torque ripple and vibration of PMSMs are explored, and some existing remedies in their reductions are understood. Then the experimental observation of vibration characteristics for the established PMSM drive is made. And the random pulse width modulation (PWM) is applied to randomize the winding current harmonic spectrum distribution, and thus to effectively achieve its vibration reduction.
Finally, having reviewed some commonly used existing position sensorless control methods of PMSM drive, a sensorless control scheme based on high-frequency signal injection is developed. It possesses the following features: (i) unidirectional starting is achieved based on magnetic anisotropy via narrow voltage pulse excitation; (ii) rotor absolute position is estimated to yield good low-speed driving performance; and (iii) a simple robust control is employed to enhance the dynamic response of rotor position estimation.
A.AC Motors and PMSMs
[1]P. C. Sen, Principle of Electric Machines and Power Electronics, 2nd ed. Canada: Wiley John & Sons, Inc., 1997.
[2]P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System. New York: Wiley, John & Sons, Inc., 2002.
[3]B. K. Bose, Modern Power Electronics and AC Drives. New Jersey: Prentice Hall, Inc., 2002.
[4]R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control. New Jersey: Prentice Hall, Inc., 2001.
[5]J. R. Hendershot Jr. and T. J. E. Miller, Design of Brushless Permanent-Magnet Motor, Hillsboro Ohio: Magna Physics Publishing, 1994.
[6]D. C. Hanselman, Brushless Permanent-Magnet Motor Design. New York: McGraw, Inc., 1994.
[7]S. Morimoto, “Trend of permanent magnet synchronous machines,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 101-108, 2007.
[8]M. Jungreis and A. W. Kelley, “Adjustable speed drive for residential applications,” IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1315-1322, 1995.
[9]Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 118-124, 2007.
[10]H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” Conf. Rec. IEEE IAS, 1999, vol. 2, pp. 840-845.
[11]M. Yabe, K. Sakanobe and M. Kawakubo, “High efficient motor drive technology for refrigerator,” in Proc. IEEE Environmentally Conscious Design and Inverse Manufacturing, 2005, pp. 708-709.
[12]S. Kawano, H. Murakami and N. Nishiyama, “High performance design of an interior permanent magnet synchronous motor for electric vehicles,” in Proc. IEEE PCC-Nagoka, 1997, pp. 33-36.
[13]Y. Honda, T. Nakamura, T. Higaki and Y. Takeda, “Motor design considerations and test results of an interior permanent magnet synchronous motor for electric vehicles” in Proc. IEEE IAS, 1997, vol. 1.1, pp. 75-82.
[14]A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1531-1537, 2007.
B.Motor Design
[15]M. Yoneda, M. Shoji, K. Yongjae and H. Dohmeki, “Novel selection of the slot pole ratio of the PMSM for auxiliary automobile,” in Proc. IEEE IAS, 2006, vol. 1, pp. 8-13.
[16]D. Zarko, D. Ban and T. A. Lipo, “Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance,” IEEE Trans. Magn., vol. 42, no. 7, pp. 1828-1837, 2006.
[17]M. Sanada and S. Morimoto, “Efficiency improvement in high speed operation using slot-less configuration for permanent magnet synchronous motor,” in Proc. IEEE Power Engineering, 2007, vol. 1, no. 1, pp. 1-7.
[18]G. Sooriyakumar, R. Perryman and S. J. Dodds, “Cogging analysis for fractional slot/pole permanent magnet synchronous motors,” in Proc. UPEC, 2007, pp. 188-191.
[19]P. Sergeant and A. Van den Bossche, “Segmentation of magnets to reduce losses in permanent-magnet synchronous machines,” IEEE Trans. Magn., vol. 44, no.11, pp. 4409-4412, 2008.
[20]R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque tipple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009.
C.Modeling and Parameter Estimation
[21]P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, Part I: The permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
[22]S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
[23]N. Urasaki, T. Senjyu and K. Uezato, “A novel calculation method for iron loss resistance suitable in modeling permanent-magnet synchronous motors,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 41-47, 2003.
[24]A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and D. Min, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
[25]M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
D.Switching and Dynamic Control
[26]J. Holtz, “Pulse width modulation- a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[27]M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[28]M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000.
[29]B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[30]A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881.
[31]A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Carrier-based PWM-VSI over- modulation strategies: analysis, comparison, and design,” IEEE Trans. Power Electron., vol. 13, no. 4, pp. 674-689, 1998.
[32]A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[33]H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motor,” in Proc. IEE Elect. Power Appl., 2000, vol. 147, no. 6, pp. 503-512.
[34]H. L. Huy, K. Slimani and P. Viarouge, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” in Proc. IEEE IAS, 1991, vol. 1, no. 28, pp. 996-1002.
[35]H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
[36]A. Rahideh, M. Karimi, A. Shakeri and M. Azadi, “High performance direct torque control of a PMSM using fuzzy logic and genetic algorithm,” in Proc. IEEE IEMDC, 2007, vol. 2, no. 1, pp. 932-937.
[37]S. Hassaine, S. Moreau, C. Ogab and B. Mazari, “Robust speed control of PMSM using generalized predictive and direct torque control techniques,” in Proc. IEEE ISIE, 2007, pp. 1213-1218.
[38]Y. A.-R. I. Mohamed, “Direct instantaneous torque control in direct drive permanent magnet synchronous motors- a new approach,” IEEE Trans. Energy Convers., vol. 22, no. 4, pp. 829-838, 2007.
[39]F. Morel, J. M. Retif, L. S. Xuefang and C. Valentin, “Permanent magnet synchronous machine hybrid torque control,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 501-511, 2008.
[40]J. Bastos, A. Monti and E. Santi, “Design and implementation of a nonlinear speed control for a PM synchronous motor using the synergetic approach to control theory,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3397-3402.
[41]S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear controller design for a permanent magnet synchronous motor,” in Proc. IEEE IEMDC, 2007, vol. 1, pp. 776-780.
[42]D. H. Lee and J. W. Ahn, “Dual speed control scheme of servo drive system for a nonlinear friction compensation,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 959-965, 2008.
[43]B. Singh, B. P. Singh and S. Dwivedi, “DSP based implementation of sliding mode speed controller for direct torque controlled PMSM drive,” in Proc. IEEE ICIT, 2006, pp. 1301-1308.
[44]M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[45]C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1529-1535, 2004.
[46]T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet synchronous motor drive based on neuro-fuzzy approach,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 602-606.
[47]M. I. Chy and M. N. Uddin, “Recent developments of artificial intelligent controllers for IPM motor drive applications,” in Proc. IEEE ICIT, 2006, pp. 253-258.
[48]T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10.
[49]M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive speed control for vector controlled permanent magnet synchronous motor drive,” in Proc. IEEE PEDS, 2006, vol. 1, pp. 618-623.
[50]Y. A.-R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006.
[51]T. N. Shi, X. C. Wang, C. L. Xia and Q. Zhang, “Adaptive speed control of PMSM based on wavelet neural network,” in Proc. IEEE ISIE, 2007, pp. 2842-2847.
[52]Y. A.-R. I. Mohamed, “A hybrid-type variable-structure instantaneous torque control with a robust adaptive torque observer for a high-performance direct-drive PMSM,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2491-2499, 2007.
[53]Y. A.-R. I. Mohamed and E. F. El-Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 92-100, 2008.
E.Commutation Tuning Control
[54]H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” in Proc. IEE Electric Power Appl., vol. 146, no. 6, pp. 678-684, 1999.
[55]H. C. Chen and C. M. Liaw, “Current-mode control for sensorless BDCM drive with intelligent commutation tuning,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 747-756, 2002.
[56]C. C. Liaw, C. M. Liaw, H. C. Chang and M. S. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, no. 2, pp. 1045-1051.
[57]J. Soltani and M. Pahlavaninezhad, “Adaptive backstepping based controller design for interior type PMSM using maximum torque per ampere strategy,” in Proc. PEDS, 2006, vol. 1, pp. 596-601.
[58]Y. A.-R. I. Mohamed and T. K. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy convers., vol. 21, no. 3, pp. 636-644, 2006.
[59]P. Niazi, H. A. Toliyat and A. Goodarzi, “Robust maximum torque per ampere (MTPA) control of PM-Assisted SynRM for traction applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1538-1545, 2007.
F.Loss Minimization
[60]C. Mademlis, J. Xypteras and N. Margaris, “Loss minimization in surface permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electorn., vol. 47, no. 1, pp. 115-122, 2000.
[61]J. Lee, K. Nam, S. Choi and S. Kwon, “Loss-minimizing control of PMSM with the use of polynomial approximations,” in Proc. IEEE IAS, 2008, vol. 1, pp. 1-9.
[62]C. Cavallaro, A. O. DiTommaso, R. Miceli, A. Raciti, G. R. Galluzzo and M. Trapanese, “Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches,” IEEE Trans. Ind. Electorn., vol. 52, no. 4, pp. 1153-1160, 2005.
G.Torque Ripple Reduction
[63]J. Holtz and L. Springob, “Identification and compensation of torque ripple in high-precision permanent magnet motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 309-320, 1996.
[64]B. H. Kang, C. J. Kim, H. S. Mok and G. H. Choe, “Analysis of torque ripple in BLDC motor with commutation time,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 1044-1048.
[65]P. Mattavelli, L. Tubiana and M. Zigliotto, “Torque-ripple reduction in PM synchronous motor drives using repetitive current control,” IEEE Trans. Power Electorn., vol. 20, no. 6, pp. 1423-1431, 2005.
[66]M. N. Uddin, “An adaptive filter based torque ripple minimization of a fuzzy logic controller for speed control of a PM synchronous motor” in Proc. IEEE IAS, 2005, vol. 2, pp. 1300-1306.
[67]D. K. Kim, K. W. Lee and B. I. Kwon, “Commutation torque ripple reduction in a position sensorless brushless DC motor drive,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1762-1768, 2006.
[68]K. Y. Nam, W. T. Lee, C. M. Lee and J. P. Hong, “Reducing torque ripple of brushless DC motor by varying input voltage,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1307-1310, 2006.
[69]J. P. Yun, C. W. Lee, S. H. Choi and S. W. Kim, “Torque ripples minimization in PMSM using variable step-size normalized iterative learning control,” IEEE Trans. Robot. Autom., pp. 1-6, 2006.
[70]K. Gulez, A. A. Adam and H. Pastaci, “Torque ripple and EMI noise minimization in PMSM using active filter topology and field-oriented control,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 251-257, 2008.
H.Vibration Suppression
[71]S. Hattori, M. Ishida and T. Hori, “Vibration suppression control method for PMSM utilizing repetitive control with auto-tuning function and Fourier transform,” in Proc. IEEE IECON, 2001, vol. 3, pp. 1673-1679.
[72]S. Yu, Q. Zhao and R. Tang, “Researches on noise and vibration characteristics of large-capacity permanent magnet synchronous machine,” in Proc. IEEE ICEMS, 2001, vol. 2, pp. 846-849.
[73]K. Kawai, T. Zanma and M. Ishida, “Simultaneous vibration suppression control of PMSM using repetitive control with Fourier series,” in Proc. IEEE ICIT, 2006, pp. 854-859.
[74]S. Yu and R. Tang, “Electromagnetic and mechanical characterizations of noise and vibration in permanent magnet synchronous machines,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1335-1338, 2006.
[75]A. Shimada, T. Zanma, S. Doki and M. Ishida, “Current compensation signal in suppression control for frame vibration of PMSM by sensorless control,” in Proc. IEEE PCC, 2007, pp. 874-878.
I.Field-Weakening Control
[76]S. Morimoto, Y. Takeda, T. Hirasa and K. Taniguchi, “Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity,” IEEE Trans. Ind. Appl., vol. 26, no. 5, pp. 866-871, 1990.
[77]D. S. Maric, S. Hiti, C. C. Stancu and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IECON, 1998, vol. 1, pp. 508-512.
[78]J. H. Song, J. M. Kim and S. K. Sul, “A new robust SPMSM control to parameter variations in flux weakening region,” in Proc. IECON, 1996, vol. 2, pp.1193-1198.
[79]S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 920-926, 1994.
[80]W. L. Soong and N. Ertugrul, “Field-weakening performance of interior permanent-magnet motors,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1251-1258, 2002.
[81]T. Schneider, T. Koch and A. Binder, “Comparative analysis of limited field weakening capability of surface mounted permanent magnet machines,” in Proc. IEE Elect. Power Appl., 2004, vol. 151, no. 1, pp. 76-82.
[82]C. Mademlis, I. Kioskeridis and N. Margaris, “Optimal efficiency control strategy for interior permanent-magnet synchronous motor drives,” IEEE Trans. Energy Convers., vol. 19, no. 4, pp. 715-723, 2004.
[83]J. O. P. Pinto, N. P. Filho and J. S. Lawler, “Analysis of limit of the constant power speed range of the permanent magnet synchronous machine driven by dual mode inverter,” in Proc. IEEE IAS, 2005, vol. 4, pp. 2540-2545.
[84]M. M. Bech, T. S. Frederiksen and P. Sandholdt, “Accurate torque control of saturated interior permanent magnet synchronous motors in the field-weakening region,” in Proc. IEEE IAS, 2005, vol. 4, pp. 2526-2532.
[85]M. M. Swamy, T. J. Kume, A. Maemura and S. Morimoto, “Extended high-speed operation via electronic winding-change method for AC motors,” IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 742-752, 2006.
[86]J. Salomaki, M. Hinkkanen and J. Luomi, “Influence of inverter output filter on maximum torque and speed of PMSM drives,” in Proc. IEEE PCC-Nagoka, 2007, pp. 852-859.
[87]T. S. Kwon and S. K. Sul, “A novel flux weakening algorithm for surface mounted permanent magnet synchronous machines with infinite constant power speed ratio,” in Proc. IEEE ICEMS, 2007, pp. 440-445.
J.Pulse Amplitude Modulation
[88]F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 607-614, 2004.
[89]W. Zhigan, G. Zhou and Y. Jianping, “Line adaptive PAM & PWM drive for BLDCM,” in Proc. IEEE IPEMC, 2004, vol. 3, pp. 1263-1267.
[90]K. Taniguchi, S. Saegusa and T. Morizane, “PAM inverter system with soft-switching PFC converter suitable for PM motor drive,” in Proc. IEEE PEDS, 2006, vol. 1, pp. 793-798.
K.Switch-Mode Rectifiers and Front-End AC/DC Converters
[91]O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[92]M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” in Proc. IEEE PEDS, 1996, vol. 2, pp. 637-643.
[93]J. A. Pomilio and G. Spiazzi, “A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 963-970, 2002.
[94]H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 560-566, 2004.
[95]S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 1417-1425, 2004.
[96]G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected converter topologies,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 23-35, 2005.
[97]J. Yungtaek, M. M. Jovanovic, K. H. Fang and Y. M. Chang, “High-power-factor soft-switched boost converter,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 98-104, 2006.
[98]P. N. Ekemezie, “Design of a power factor correction AC-DC converter,” in Proc. IEEE AFRCON, 2007, pp. 1-8.
[99]J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” in Proc. IET. Elect. Power Appl., vol. 1, no. 3, pp. 316-328, 2007.
[100]M. Orabi, R. Haron and A. El-Aroudi, “Comparison between nonlinear-carrier control and average-current-mode control for PFC converters,” in Proc. IEEE PESC, 2007, pp. 1349-1355.
[101]P. Wolfs and P. Thomas, “Boost rectifier power factor correction circuits with improved harmonic and load voltage regulation responses,” in Proc. IEEE PESC, 2007, pp. 1314-1318.
[102]L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[103]Y. Jang, M. M. Jovanovic and D. L. Dillman, “Bridgeless PFC boost rectifier with optimized magnetic utilization,” in Proc. IEEE APEC, 2008, pp. 1017-1021.
[104]A. A. de Melo Bento and E. R. C. da Silva, “Hybrid one-cycle controller for boost PFC Rectifier,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 268-277, 2009.
L.Sensorless Control
[105]N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996.
[106]J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” in Proc. IEEE IAS, 1999, vol. 1, pp. 143-150.
[107]D. Montesinos, S. Galceran, F. Blaabjerg, A. Sudria and O. Gomis, “Sensorless control of PM synchronous motors and brushless DC motors-an overview and evaluation,” in Proc. IEEE Power Electron. and Appl., 2005, pp. 10.
[108]D. Montesinos, S. Galceran, A. Sudria, O. Gomis and F. Blaabjerg, “Low cost sensorless control of permanent magnet motors-an overview and evaluation,” in Proc. Elect. Mach. and Drives, 2005, pp. 1681-1688.
[109]A. H. Wijenayake, J. M. Bailey, and M. Naidu, “A DSP-based position sensor elimination method with on-line parameter online identification scheme for permanent magnet synchronous motor drives,” in Proc. IEEE IAS, 1995, vol. 1, pp. 207-215.
[110]S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no.1, pp. 297-303.
[111]S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
[112]R. Mizutani, T. Takeshita and N. Matsui, “Current model-based sensorless drives of salient-pole PMSM at low speed and standstill,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 841-846, 1998.
[113]M. C. Huang, A. J. Moses and F. Anayi, “The comparison of sensorless estimation techniques for PMSM between extended Kalman filter and flux-linkage observer,” in Proc. IEEE APEC, 2006, vol. 2, pp. 654-659.
[114]S. Zhe, Z. Rongxiang and W. Jing, “Sensorless control method of PMSM based on extended Kalman Filter,” in Proc. WCICA, 2006, vol. 2, pp. 8093-8097.
[115]M. Tomita, T. Senjyu, S. Doki and S. Okuma, “New sensorless control for brushless DC motors using disturbance observers and adaptive velocity estimations,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 274-282, 1998.
[116]K. B. Lee and F. Blaabjerg, “Improved sensorless vector control for induction motor drives fed by a matrix converter using nonlinear modeling and disturbance observer,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 52-59, 2006.
[117]Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
[118]Y. Zhang and V. Utkin, “Sliding mode observers for electric machines and overviews,” in Proc. IEEE IECON, 2002, vol. 3, pp. 1842-1847.
[119]K. Paponpen and M. Konghirun, “An improved sliding mode observer for speed sensorless vector control drive of PMSM,” in Proc. IEEE IPEMC, 2006, vol. 2, pp. 1-5.
[120]L. Jiaxi, Y. Guijie and L. Tiecai, “A new approach to estimated rotor position for PMSM based on sliding mode observer,” in Proc. IEEE ICEMS, 2006, pp. 426-431.
[121]C. Song and X. Longya, “Position sensorless control of PMSM based on a novel sliding mode observer over wide speed range,” in Proc. IEEE IPEMC, 2006, vol. 3, pp. 1-7.
[122]S. Chi, Z. Zhang and L. Xu, “Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 582-590, 2009.
[123]J. Kim and S. Sul, “High performance PMSM drives without rotational position sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol.1, pp. 75-82.
[124]J. Solsona, M. I. Valla, and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 38-43, 1996.
[125]A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of PMSM drives,” in Proc. IEEE IECON, 2005, pp. 1474-1479.
[126]A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
[127]S. M. M. Mirtalaei, J. S. Moghani, K. Malekian and B. Abdi, “A novel sensorless control strategy for BLDC motor drives using a fuzzy logic-based neural network observer,” in Proc. IEEE SPEEDAM, 2008, vol. 2, pp. 1491-1496.
[128]J. Cao, B.Cao, W. Chen, P. Xu and X. Wu, “Neural network control of electric vehicle based on position-sensorless brushless DC motor,” in Proc. IEEE BOBIO, 2007, pp. 1900-1905.
[129]P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient AC machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 240-247, 1995.
[130]S. Ogasawara and H. Akagi, “An approach to real-time position estimation at zero and low speed for a PM motor based on saliency,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 163-168, 1998.
[131]F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[132]S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, no. 2, pp. 1663-1668.
[133]A. Piippo, M. Hinkkanen and J. Luomi, “Sensorless control of PMSM drives using a combination of voltage model and HF signal injection,” in Proc. IEEE IAS, 2004, vol. 2, no. 2, pp. 964-970.
[134]J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[135]J. M. Guerrero, M. Leetmaa, F Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[136]Y. Jeong, R. D. Lorenz, T. M. Jahns and Seung-Ki Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005.
[137]C. H. Choi and J. K. Seok, “Compensation of zero-current clamping effects in high-frequency signal injection based sensorless PM motor drives,” IEEE Trans. Ind. Appl., vol. 43, no. 5, pp. 1258-1265, 2007.
[138]N. Bianchi, S. Bolognani, J. H. Jang and S. K. Sul, “Advantages of inset PM nachines for zero-speed sensorless position detection,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp.1190-1198, 2008.
[139]S. Shinnaka, “A new speed-varying ellipse voltage injection method for sensorless drive of permanent-magnet synchronous motors with pole saliency-new PLL method using high-frequency current component multiplied signal,” IEEE Trans. Ind. Appl., vol. 44, no. 3, pp.777-788, 2008.
[140]A. Piippo, J. Salomaki and J. Luomi, “Signal injection in sensorless PMSM drives equipped with inverter output filter,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1614-1620, 2008.
M.Initial Position Detection
[141]Y. Yan and J. G. Zhu, “A survey of sensorless initial rotor position estimation schemes for permanent magnet synchronous motors,” in Proc. AUPEC, 2004.
[142]J. Persson, M. Markovic and Y. Perriard, “A new standstill position detection technique for nonsalient permanent-magnet synchronous motors using the magnetic anisotropy method,” IEEE Trans. Magn., vol. 43, no. 2, pp. 554-560, 2007.
[143]J. W. Lee, “A novel method of estimating an initial magnetic pole position of a PMSM,” in Proc. IEEE PESC, 2006, pp. 1-6.
[144]M. Boussak, “Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for interior permanent magnet synchronous motor drive,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1413-1422, 2005.
[145]K. Akatsu, M. C. Harke and R. D. Lorenz, “SPMSM design considerations for initial position and magnet polarity estimation using carrier signal injection,” in Proc. IEEE IAS, 2007, pp. 2393-2398.
[146]S. Pekarek and P. Beccue, “Using torque-ripple-induced vibration to determine the initial rotor position of a permanent magnet synchronous machine,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 818-821, 2006.
N.Others
[147]F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, New Jersey: Prentice Hall, Inc., 1999.
[148]G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systm, 4th ed. New Jersey: Prentice Hall, Inc., 2002.
[149]“Digital signal controller TMS320F28335 data sheet,” http://www.ti.com/lit/gpn /tms320f28335
[150]“A new version intelligent power module for high performance motor,” http://www. mitsubishichips.com/Global/ conference/pdf/Paper2.pdf.
[151]N. A. Allaith and D. A. Grant, “Intelligent power modules for voltage-fed converter drives,” in Proc. IEEE CCECE, 2000, vol. 2, pp. 918- 921.
[152]Mitsubishi semiconductor PS21265-P/AP datasheet, http://mitsubishichip.com/Global/common/cfm/ePartProfile.cfm?FILENAME=ps21265-p(-ap)_e.pdf.
[153]C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design, and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000.
[154]Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[155]H. J. Chen, “Design and implementation of a robust sensorless permanent-magnet synchronous motor drive with intelligent non-reversible starting,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., ROC, 2008.