簡易檢索 / 詳目顯示

研究生: 羅玉鄰
論文名稱: 雷射鍍膜法製作PCMO緩衝層與其對PZT鐵電薄膜之影響研究
指導教授: 林樹均教授
林諭男教授
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 88
中文關鍵詞: 雷射鍍膜
外文關鍵詞: PCMO, PZT
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以脈衝雷射鍍膜(PLD)鍍製(Pr0.67Ca0.33)MnO3,PCMO作為緩衝層,而Pb(Zr0.52Ti0.48)O3,PZT鐵電薄膜以有機金屬鹽裂解法鍍在有PCMO作為緩衝層之基板上。由於PCMO與PZT有相同鈣鈦礦結構,且晶格常數匹配,使得PZT材料得以在不嚴苛的條件下,在矽基板與白金基板上順利成長品質良好之薄膜。本文將探討製程參數對PCMO緩衝層結晶性質影響,以及使用PCMO作為緩衝層對PZT鐵電薄膜結晶性質與特性影響研究。


    目錄………………………………………………………………………i 圖目錄……………………………………………………………………v 第一章 前言……………………………………………………………1 第二章 文獻回顧………………………………………………………3 2-1(R1-xAx)MnO3材料…………………………………………………3 2-1-1鈣鈦礦結構……………………………………………………3 2-1-2磁阻現象與類別………………………………………………4 2-1-3超巨磁阻材料之發展…………………………………………6 2-2脈衝雷射鍍膜法(pulsed laser deposition,PLD) …………………7 2-2-1雷射本身的影響………………………………………………7 2-2-2靶材的影響……………………………………………………8 2-2-3環境氣氛(ambient gas)的影響…………………………………9 2-2-4基板的影響……………………………………………………9 2-3 Pb(Zrx,Ti1-x)O3,PZT鐵電材料……………………………………10 2-3-1鐵電性質………………………………………………………10 2-3-2鈣鈦礦型(perovskite)鐵電材料………………………………13 2-4鐵電薄膜之發展……………………………………………………14 2-4-1鐵電薄膜製作方法……………………………………………15 2-4-2有機金屬鹽裂解法……………………………………………16 2-4-3薄膜的製程……………………………………………………19 2-5鐵電薄膜在微機電系統上之應用…………………………………21 2-5-1 微機電系統簡介……………………………………………21 2-5-2 記憶元件……………………………………………………22 2-5-3 積體光學元件………………………………………………23 2-5-4 感測元件……………………………………………………25 第三章 實驗方法………………………………………………………38 3-1基板製備……………………………………………………………38 3-2 PCMO薄膜製備……………………………………………………38 3-2-1 PCMO靶材製備……………………………………………39 3-2-2 脈衝雷射鍍膜設備…………………………………………39 3-2-3 脈衝雷射剝鍍步驟…………………………………………40 3-3 鋯鈦酸鉛鐵電薄膜之製備………………………………………41 3-3-1有機金屬化合物之金屬成份定量……………………………41 3-3-2鋯鈦酸鉛薄膜製程……………………………………………41 3-4 特性量測…………………………………………………………43 3-4-1 X光繞射分析(XRD) …………………………………………43 3-4-2掃描式電子顯微鏡(SEM)…………………………………43 3-4-3AFM原子力顯微鏡分析……………………………………43 3-4-4極化強度-電場量測 ( P-E ) …………………………………43 3-4-5電流-電壓的量測 ( I-V ) ……………………………………43 3-4-6疲勞測試(Fatigue) ……………………………………………44 第四章 結果與討論……………………………………………………47 4-1 脈衝雷射鍍膜法鍍製PCMO薄膜………………………………47 4-1-1 基板溫度對薄膜成長之影響……………………………47 4-1-2 氣體種類與壓力對薄膜結構之影響……………………48 4-1-3 雷射輸出功率對薄膜結晶構造之影響…………………49 4-1-4 脈衝重複率對薄膜結晶行為之影響……………………49 4-1-5 鍍膜時間對薄膜結晶行為之影響………………………50 4-2 PCMO薄膜的特性…………………………………………………52 4-2-1 熱處理對PCMO薄膜表面形貌影響……………………52 4-2-2 PCMO薄膜漏電流特性……………………………………53 4-3 PCMO薄膜對PZT鐵電層之緩衝層效應…………………………53 4-3-1 降低PZT薄膜製程溫度…………………………………53 4-3-2 指導PZT成長晶向………………………………………54 4-3-3 使PZT薄膜表面均勻化…………………………………55 4-3-4 降低PZT薄膜漏電流……………………………………55 4-3-5 提高PZT薄膜耐疲勞程度………………………………55 第五章 結論……………………………………………………………82 參考文獻………………………………………………………………83

    1. C. P. de Araujo, J. F. Scott and G. W. Taylor, “Ferroelectric Thin Films: Synthesis and Basic Properties”, Gordon and Breach publishers, (1996).
    2. Z. Jirak, S. Krupicka, Z. Simsa, M. Dlouha and S. Vratislav, “Neutron-Diffraction Study of Pr1-xCaxMnO3 Perovskites”, J. Magn. Magn. Mater., Vol. 1-2, pp. 153-166 (1985).
    3. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo and Y. Tokura, “Magnetic-field-induced metal-insulator phenomena in Pr1-xCaxMnO3 with controlled charge-ordering instability”, Phys. Rev. B, Vol. 53, pR1689 (1996).
    4. R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz and K. Samwer, “Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnOx”, Phys. Lett., Vol. 71, pp. 2331 (1993).
    5. S. Jin, T.H. Tiefl, M. Mc. Cormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, “Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films”, Science, Vol. 264, pp. 413 (1994).
    6. R. K. Singh, O. W. Holland and J. Narajan, “Theoretical model for deposition of superconducting thin films using pulsed laser evaporation technique”, J. Appl. Phys., Vol. 68(1), pp. 275 (1990).
    7. A. Richter, “Characteristic features of laser-produced plasmas for thin film deposition”, Thin Solid Films, Vol. 188, pp. 275 (1990).
    8. H.J. Scheibe, A. A. Gorbunov, G. K. Baranova, N. V. Klassen, and V. I. Konov, “Thin film deposition by excimer laser evaporation”, Thin Solid Films, Vol. 189, pp. 283 (1990).
    9. A. D. Zweig, “A thermo-mechanical model for laser ablation”, J. Appl. Phys., Vol. 70(3), pp. 1684 (1991).
    10. R. K. Singh, D. Bhattacharya and j. Narajan, “Laser-target interations and its effect on suface morphology of laser deposited thin films”, Mat. Tes. Sox. Symp. Proc., Vol. 201, pp. 437 (1991).
    11. A. Okano and A. Y. Matsuura, “A model of laser ablation in nonmetallic inorganic solids”, J. Appl. Phys., Vol. 73(7), pp. 3158 (1993).
    12. M. A. Kadar-Kallen and K. D. bonin, “Focusing of particle beams using two stage laser ablation”, Appl. Phys. Lett., Vol. 54(23), pp. 2296 (1989).
    13. S. A. Darke and K. F. Tyson, “Interaction of laser radiation with solid materials and its significance to analytical spectrometry- A review”, J. Analy. Atom. Spect., Vol.8, pp. 145 (1993).
    14. X. D. Wu, A. Inam, “Pulsed laser deposition of high Tc superconduction thin films-present and future”, Mat. Res. Soc Symp. Proc., Vol. 191, pp. 129 (1990).
    15. L. Lynds and B. R. Weinberger, “Pulsed laser ablation as a source of energetic reactants: Synthesis of superconductin high to thin films”, Mat. Res. Soc. Symp. Proc., Vol 191, pp. 3 (1990).
    16. U. J. Gibson, “Nd:YAG laser ablation of BaTiO3 thin films”, Mat. Res. Soc Symp. Proc., Vol. 191, pp.19 (1990).
    17. R. K. Singh, D. Bhattacharya and J. Narayan, “Control of surface particle density in pulsed laser deposition of superconducting TBCO and diamond-like carbon thin films”, Appl. Phys. Lett., Vol. 61(4), pp.843 (1992).
    18. K. Murakami, “Dynamics of laser ablation of high Tc superconductors and semiconductors, and a new method for growth of films”, European Mat. Res. Soc. Mono., Vol. 4, pp.125 (1992).
    19. K. Nashimoto and D. K.Fork, “Epitaxial growth of MgO on GaAs(001) for growing BaTiO3 thin films by pulsed laser deposition”, Appll. Phys. Lett., Vol. 60(10), pp.1199 (1992).
    20. J. Lee and L. Jonson, “Effects of crystalline quality and electrode material on fatigue in PZT thin film capacitors”, Appl. Phys. Lett., Vol. 63(1), pp. 27 (1993).
    21. C. Feldman, “BaTiO3 Piezoelectric Thin Film by Flash Evaporation method”, Rev. Sci, Instr., Vol. 26, pp. 463 (1955).
    22. R. W. Vest,“Metallo-Organic Decomposition (MOD) Processing of Ferroelectric and Electroptic Films: A Review”, Ferroelectrics, Vol. 102, pp. 53-68 (1990).
    23. S. H. Kim, Y. S. Choi and C. E. Kim, “Preparation of Pb(Zr0.52Ti0.48)O3 thin films on Pt/RuO2 double electrode by a new sol-gel route”, J. Mater. Res., Vol. 12(6), pp. 1576-1581 (1997).
    24. 陳三元,“強介電薄膜之液相化學法製作”,工業材料 108 期,p.100。
    25. Y. Xu, “Ferroelectric Materials and Their Appllications”, North Holland, Netherlands, pp. 1-36. (1991).
    26. S. K. Singh, S. B. Palmer, D. McK Paul and M. R. Lee, “Pr0.67Ca0.33MnO3/YBa2Cu3O7 thin film bilayers grown by pulsed laser ablation deposition”, J. Phys. D: Appl. Phys., Vol. 29, pp. 2522-2524 (1996).
    27. D. Kumar, Rajiv K. Singh and C. B. Lee, “Magnetoresistance in Pr0.65Ba0.05Ca0.3Mn3-□ thin films”, Phys. Rev. B, Vol. 56, 13666 (1997).
    28. J. Sakai, J. Hioki, T. Ohnishi, T. Yamaguchi and S. Imai, “YBa2Cu3O7-z/Pr0.5Ca0.5MnO3-y/YBa2Cu3O7-zSandwich Type Josephson Junctions”, Jpn. J. Appl. Phys., Vol. 37, pp. 3286-3289 (1998).
    29. A. Masuno, T. Terashima and M. Takano, ”Transport and magnetic properties of the micro-fabricated perovskite-type manganese oxides”, Physica B, Vol. 329-333, pp. 920 (2003).
    30. Y. P. Lee, V. G. Prokhorov, J. Y. Rhee, K. W. Kim, G. G. Kaminsky and V. S. Flis, “The controlled charge ordering and evidence of the metallic state in Pr0.65Ca0.35MnO3 films”, J. Phys.: Condens. Matter, Vol. 12, L133-L138 (2000).
    31. H. Oshima, K. Miyano, Y. Konishi, M. Kawasaki and Y. Tokura, “Switching cehavior of epitaxial perovskite manganite thin films”, Appl. Phys. Lett., Vol. 75(10), pp.1473 (1999).
    32. M. Terakago, S. Mine, T. Sakatani, S. Hontsu, H. Nishikawa, M. Nakamori, H. Tabata and T. Kawai, “Superconducting magnetostatic wave devices using HTS/perovskite-type manganite PCMO heterostructure”, Supercond. Sci. Technol., Vol. 14, pp. 1140 (2001).
    33. A. M. Haghiri-Gosnet, M. Hervieu, Ch. Simon, B. Mercey and B. Raveau, “Charge ordering in Pr0.5Ca0. 5MnO3 thin films: A new form initiated by strain effects if LaAlO3 substrate”, J. Appl. Phys., Vol. 88(6), pp. 3545 (2000).
    34. W. Prellier, A. M. Haghiri-Gosnet, B. Mercey, Ph. Lecoeur, M. Hervieu, Ch. Simon and B. Raveau, “Spectacular decrease of the melting magnetic field in the charge-ordered state of Pr0.5Ca0. 5MnO3 films under tensile strain”, Appl. Phys. Lett., Vol. 77(7), pp.1023 (2000).
    35. W. Prellier, Ch. Simon, A. M. Haghiri-Gosnet, B. Mercey, and B. Raveau, “Thickness dependence of the stability of the charge-ordered state in Pr0.5Ca0. 5MnO3 thin films”, Phys. Rev. B, Vol. 62, R16337 (2000).
    36. W. Prellier, E. Rauwel Buzin, Ch. Simon, B. Mercey, M. Hervieu, S. de Brion and G. Chouteau, “High magnetic field transport measurements of charge-ordered Pr0.5Ca0. 5MnO3 strained thin films”, Phys. Rev. B, Vol. 66, 024432-1 (2002).
    37. W. Prellier, E. Rauwel Buzin, B. Mercey, Ch. Simon, M. Hervieu and B. Raveau, “Strain effects in charge-ordered Pr0.5Ca0. 5MnO3 manganite thin films”, J. Phys. and Chem. of Solids, Vol. 64, pp. 1665-1669 (2003).
    38. S. K. Singh, S. B. Palmer, D. McK Paul and M. R. Lee, “Growth, transport, and magnetic properties of Pr0.67Ca0.33MnO3 thin film”, Appl. Phys. Lett., Vol. 69(2), pp. 263-265 (1996).
    39. W. Wu, K. H. Wong, C. L. Choy and Y. H. Zhang, “Top-interface-controlled fatigue of epitaxial Pb(Zr0.52Ti0.48)O3 ferroelectric thin films on La0.7Sr0.3MnO3 electrodes”, Appl. Phys. Lett., Vol. 77(21), pp. 3441-3443 (2000).
    40. M. G. Norton, C. B. Carter, B. H. Moeckly, S. E. Russek and R. A. Buhrman, “Optimizing process parameters for the growth of YBa2Cu3O7-□ thin films”, Mater. Res. Soc. Symp. Proc. 191, pp 141-146 (1990).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE