簡易檢索 / 詳目顯示

研究生: 王盛翰
Wang, Sheng Hann
論文名稱: 奈米金粒子散射光色譜分析法之發展及其在研究奈米顆粒胞吞作用之應用
Development of the Scattering Chromatogram Analysis and Its Applications in Studies of the Endocytosis of Gold Nanoparticles
指導教授: 曾繁根
Tseng, Fan Gang
魏培坤
Wei, Pei Kuen
口試委員: 楊重熙
邱爾德
李超煌
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 119
中文關鍵詞: 奈米金粒子表面電漿共振散射影像色譜分析胞吞作用細胞毒性
外文關鍵詞: Gold nanoparticles, Local surface plasmon resonance, Scattering images, Chromatogram analysis, Endocytosis, Cytotoxicity
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為發展散射光色譜法及其應用在觀測奈米金粒子與活體細胞之交互作用。奈米粒子近年來在生物醫學上的應用與發展受到國際間的相當矚目。因此,於本文之第一章,我們簡單介紹了奈米粒子之光學特性及現階段在生物醫學上之應用,並整理了現今已被美國食品藥品監督管理局(FDA)核准上市或正在進行安全評估研究之奈米粒子之相關生醫產品。此外,我們簡單介紹了奈米粒子的聚集和分佈對於在生物細胞系統上所造成的影響及其重要性。在第二章中,我們介紹了於此研究中所需用到之儀器、藥品及研究方法。
    於第三章中,我們研究並發展可直接觀測奈米金粒子在活體細胞中的三維分佈及其聚集程度之觀測分析法–散射光色譜分析法。藉由搭配暗場光學切片顯微及散射光色譜分析,我們可以同時定位且定量分析在活體細胞內之奈米金粒子(群)。此方法主要乃基於散射光彩色影像在RGB及HSV色彩空間上的轉換。搭配奈米金粒子獨特的局域表面電漿共振及耦合效應,彩度(H, Hue)可用來分辨奈米金粒子(群)與細胞體,亮度(V, Value)則可用來定位奈米金粒子(群)。再者,藉由已校正的已知的奈米金粒子聚集數目及其對應的V/H 值,我們便可快速估算出在活體細胞內奈米金粒子(群)的位置及聚集數量。且此方法所估算之奈米金粒子總數量與利用感應耦合電漿質譜儀所得之值相符合。相較於其他分析儀器,散射光色譜分析提供了奈米金粒子於活體細胞上之定位及定量研究上另一個更為簡易的方法。
    在第四章裡,我們利用了散色光色譜分析法來探討奈米金粒子在細胞胞吞作用中的動態發展與分佈。由於胞吞作用的影響,奈米金粒子會在細胞內經歷一連續的聚集與分離,並因此使得其散射光顏色有著明顯之變化。藉由散射光色譜分析,我們可得知在每個時期下,奈米金粒子的聚集程度。基於聚集程度的不同,我們簡單將其分為奈米金粒子於胞吞做用中的四個階段–細胞膜上貼附、胞吞小泡、初級內體以及次級內體。結果發現,貼附在細胞膜上的數量會隨著時間而下降,在胞吞小泡及初級內體裡則是會先短暫的增加後再隨即下降,而在次級內體內的數量則是會隨著時間增加,所有的數量在一段時間後皆會達到穩定值。藉由自然指數函數的擬合,便可得知奈米金粒子在各個胞吞階段的半衰期且其值與奈米金粒子之聚集程度有正相關。再者,奈米金粒子在細胞所能攝取的總數量及移除的速率與細胞的表面積相關。但相較於正常細胞(50%),癌化細胞還是有著較高的胞吞效率(75%)。同時,我們也驗證了色譜分析法在研究奈米金粒子動態分布和聚集的可行性。
    在第五章裡,我們探討了隨著施加的劑量的不同,奈米金粒子在細胞內所造成的分佈,聚集程度以及細胞毒性的差異。藉由動態散射觀測及散色光色譜分析,我們發現當施加低濃度(0.01及0.05 nM)的奈米金粒子時,絕大部分的奈米金粒子會為細胞所胞吞。而當施加濃度開始增加時(0.1及0.2 nM),部分奈米金粒子會開始堵塞在細胞膜上。且因為片狀偽足的收縮作用,金粒子會被運送至細胞頂部,並在細胞的暗場影像上產生兩區色帶:位於細胞內之金黃色及附蓋於細胞上之綠色。當濃度增加至0.5 nM時,堵塞在膜上的奈米金粒子會隨著增加,且開始聚集並造成散射光顏色之改變,並使得在膜上的綠色散射光也變成了與細胞內之散射光一樣的金黃色。藉由掃描式電子顯微鏡(SEM),我們可發現即便在低濃度下,奈米金粒子也並無法完全為細胞所胞吞。而其堆積在細胞頂部的奈米金粒子的數量與密度則是與所施加之濃度成正相關。藉由雙聚焦離子束(DBFIB)的細胞切片觀測,可發現不同於在細胞膜上的二維空間的群聚,奈米金粒子在細胞內為一三維空間的堆疊。最後,細胞毒性測試發現除了在細胞內的奈米金粒子外,隨著聚集在細胞膜上的奈米金粒子增加,所造成細胞毒性也會同時增加。
    總結,在此論文中,我們使用所發展的散射光色譜分析法,實現了利用光學影像系統達到長時間觀測且定量及定位的活體細胞與奈米粒子交互作用目的。對以奈米粒子為基礎的藥物或基因傳遞治療或是生醫影像觀測,此研究可望為其提供另一分析研究平台,以利研發或改進其效率。


    In this dissertation, we developed a chromatogram analysis based on the scattering color of gold nanoparticles (Au NPs), and applying it to the studies of intracellular interaction of Au NPs. In Chapter 1, we introduced the application, optical property of NPs, as well as consequence caused by their distribution and aggregation in biomedicine. In Chapter 2, we introduced the methods and instructions that we used in this thesis.
    In Chapter 3, we present a method to directly observe three-dimensional (3D) distribution of aggregated Au NPs in live cells by using chromatogram analysis, which based on the transformation of the color space from RGB to HSV (Hue, Saturation and Value). Owing to the localized surface plasmon resonance (LSPR) coupling effect of Au NPs and calibration of the known number of Au NPs by scattering and scanning electron microscopy (SEM) images, the Hue can distinguish Au NPs from scattering images of cellular organelles. The Value, the scattering intensity, can define the locations of Au NPs. The V/H ratio was applied to estimate the numbers of in aggregated Au NPs. This method is in good agreement with mass spectroscopic measurement in Au NPs number counting. Compared to conventional methods, this approach provides a simple observation of 3D distribution of Au NPs and their aggregation states in living cells.
    The chromatogram analysis was further applied to study the evolution of Au NP clustering in living cells in Chapter 4, which demonstrated its ability in the the 5 dimensional (location (x,y,z), time (t) and aggregation (n)) study of Au NPs. During endocytosis, Au NP clusters undergo fantastic color changes, from green to yellow-orange due to the plasmonic coupling effect. V/H ratio helps estimate the numbers of Au NPs in the clusters with time. The clusters were further categorized into four groups within the endocytosis. As the results, the late endosomes had increased number of large clusters with time, while clustered numbers in secondary and tertiary groups were first increased and then decreased that indicates the fusion and fission of the endocytic vesicles. Their time constants are calculated by an integrated rate equation, and show a positive correlation with the size of the Au NP cluster. The endocytic efficiency of Au NP is about 50% for normal cells, while 75% for cancer cells. Compared to normal cells, cancer cells show a larger number in uptake, while faster rate in removal. The propose method helps the kinetic study of endocytosed NPs in physiological conditions.
    We also discussed the dose-dependent distribution, aggregation and cytotoxicity of treated dose of Au NPs in Chapter 5. By using the scatter images and chromatic analysis, the dose-dependent cellular uptake, distribution and aggregation were revealed. With the 0.01 and 0.05 nM treatments, Au NPs were mostly endocytosed and clustered in cells. When the dose was increasing to 0.1, 0.2 nM, numbers of Au NPs were stuck on the membrane and formed two scattering color bands, yellow, larger aggregates in cells and green, individual on the membranes. As for the 0.5 nM, increased Au NPs were stuck on the membrane. Furthermore, owing the periodic lamellipodial contraction on the membrane, Au NPs were then transferred to and aggregated on the top of cells. Two yellow scatter color band were then shown. SEM images revealed the dose-dependently stuck density of Au NPS on the membrane. Dual-beam focused ion beam (DBFIB) and tilted SEM images were used to discuss the 2-D covering and 3-D stacking of the aggregated Au NPs on membrane and inside endocytic vesicles. Cytotoxicity test indicates the stuck Au NPs on the membrane would also efficiently impact the cell viability.
    In summary, we demonstrated the ability of the chromatogram analysis in the 5-D (location (x,y,z), time (t) and aggregation (n)) study of Au NPs. By using the chromatogram analysis, the optical system further realized the study in the long-term quantification and orientation of the intracellular progression of Au NPs. For the NP-based gene/drug delivery or contrast agents, this dissertation helps the understanding of the overall undergoing of the nano-carrier with cells and their following triggered cellular responses.

    摘要 i Abstract iii 致謝 vi Contents vii List of Tables x List of Figures xi Chapter 1. Introduction 1 1.1 Nanoparticle-Based Nanotechnology in Biomedical Engineering 1 1.2 Nanophotonics of Metallic Nanoparticles 5 1.3 Motivation 9 Chapter 2. Materials and Methods 12 2.1 Materials and Reagents 12 2.2 Cell Culture 12 2.3 Optical Set-Up 13 2.4 Preparation of Au NPs Cluster Array on the Glass 14 2.5 Functionalization of Au NPs for Cell Treatment 16 2.6 3D Position Definition of Au NPs with Cells 18 2.7 Sample Preparation for EM and DBFIB Inspection 20 2.8 ICP-MS Analysis 21 2.9 Cytotoxicity evaluation 21 Chapter 3. Chromatogram Analysis on Revealing Aggregated Number and Location of Gold Nanospheres within Living Cells 23 3.1 Introduction and Motivation 23 3.1.1 Applications of LSPR Coupling of Metal Nanoparticles in Cellular Bio-Molecular Studies 23 3.1.2 Color Space of Red/Green/Blue (RGB) and Hue/Saturation/Value (HSV) 25 3.1.3 Motivation 27 3.2 Experiments and Results 29 3.2.1 Chromatogram Analysis of Clustered Au NPs 29 3.2.2 3D Distribution of Au NP Aggregates in Living Cells 35 3.2.3 Validation in the Total Number of Au NPs with ICP-MS 38 3.3 Discussion 39 Chapter 4. Evolution of Gold Nanoparticle Clusters in Living Cells Studied by Sectional Dark-Field Optical Microscopy and Chromatogram Analysis 41 4.1 Introduction and Motivation 41 4.1.1 NPs-Proteins Corona Complexes in NPs’ Uptake 41 4.1.2 Endocytic Progression of NPs 44 4.1.3 Motivation 45 4.2 Experiments and Results 47 4.2.1 Dynamic Scattering Images Analyses: The Distribution of Au NPs That Interacted Within Living Cells 47 4.2.2 Co-localization of Scattering and Confocal Fluorescence Images: The Endocytic State of Au NPs with Different Aggregated Level 51 4.2.3 Kinetic Analysis of the State of Au NPs along the Endocytosis Process 52 4.2.4 Dynamic Quantification of Total Number of Au NPs 59 4.3 Discussion 62 Chapter 5. Dose Dependent Distribution and Cytotoxicity of Gold Nanoparticles. 64 5.1 Introduction and Motivation 64 5.1.1 Size and Surface Coating Dependent Endocytosis of NPs 64 5.1.2 Cytotoxicity of NPs 67 5.1.3 Motivation 70 5.2 Experiments and Results 72 5.2.1 Scattering Images and Chromatic Analysis 72 5.2.2 Demonstration of the Distribution of Au NPs by SEM and DBFIB 76 5.2.3 Dose Dependent Cytotoxicity Test 81 5.3 Discussion 83 Chapter 6.Conclusion and Future Work 86 6.1 Conclusion 86 6.2 Future Work 88 Reference 90 List of Publications 104

    [1] R.S. Singh, V.K. Rangari, S. Sanagapalli, V. Jayaraman, S. Mahendra, and V.P. Singh," Nano-Structured CdTe, CdS and TiO2 for Thin Film Solar Cell Applications". Solar Energy Materials and Solar Cells, vol. 82, pp. 315-330, 2004.
    [2] S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, and H.J. Sung," Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell". Nano Lett., vol. 11, pp. 666-671, 2011.
    [3] H. Li, X. Huang, L. Chen, Z. Wu, and Y. Liang," A High Capacity Nano Si Composite Anode Material for Lithium Rechargeable Batteries". Electrochemical and solid-state letters, vol. 2, pp. 547-549, 1999.
    [4] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon," Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries". Nature, vol. 407, pp. 496-499, 2000.
    [5] J.K. Vasir, and V. Labhasetwar," Quantification of the Force of Nanoparticle-Cell Membrane Interactions and Its Influence on Intracellular Trafficking of Nanoparticles". Biomaterials, vol. 29, pp. 4244-4252, 2008.
    [6] C.W. Lee, M.J. Chen, J.Y. Cheng, and P.K. Wei," Morphological Studies of Living Cells Using Gold Nanoparticles and Dark-Field Optical Section Microscopy". J. Biomed. Opt., vol. 14, pp. 034016, 2009.
    [7] X. Wang, C.J. Summers, and Z.L. Wang," Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays". Nano Lett., vol. 4, pp. 423-426, 2004.
    [8] S.H. Wu, K.L. Lee, A. Chiou, X. Cheng, and P.K. Wei," Optofluidic Platform for Real-Time Monitoring of Live Cell Secretory Activities Using Fano Resonance in Gold Nanoslits". Small, vol. 9, pp. 3532-3540, 2013.
    [9] L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, and O.C. Farokhzad," Nanoparticles in Medicine: Therapeutic Applications and Developments". Clinical Pharmacology & Therapeutics, vol. 83, pp. 761-769, 2007.
    [10] S.J. Hurst, A.K.R. Lytton-Jean, and C.A. Mirkin," Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes". Anal. Chem., vol. 78, pp. 8313-8318, 2006.
    [11] C. Sun, J.S.H. Lee, and M. Zhang," Magnetic Nanoparticles in MR Imaging and Drug Delivery". Advanced Drug Delivery Reviews, vol. 60, pp. 1252-1265, 2008.
    [12] B. Kang, M.M. Afifi, L.A. Austin, and M.A. El-Sayed," Exploiting the Nanoparticle Plasmon Effect: Observing Drug Delivery Dynamics in Single Cells via Raman/Fluorescence Imaging Spectroscopy". Acs Nano, vol. 7, pp. 7420-7427, 2013.
    [13] X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, and S. Weiss," Quantum Dots for Live Cells, in vivo Imaging, and Diagnostics". science, vol. 307, pp. 538-544, 2005.
    [14] K.-M. Song, M. Cho, H. Jo, K. Min, S.H. Jeon, T. Kim, M.S. Han, J.K. Ku, and C. Ban," Gold Nanoparticle-Based Colorimetric Detection of Kanamycin Using a DNA Aptamer". Analytical Biochemistry, vol. 415, pp. 175-181, 2011.
    [15] A.W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A.L. Plant," Surface Plasmon Resonance Imaging of Cells and Surface-Associated Fibronectin". BMC cell biology, vol. 10, pp. 16, 2009.
    [16] Nanoparticle-based Delivery Technologies, Vindico Pharmaceutical Inc., 2014.
    [17] I.I. Slowing, J.L. Vivero-Escoto, C.-W. Wu, and V.S.Y. Lin," Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers". Advanced Drug Delivery Reviews, vol. 60, pp. 1278-1288, 2008.
    [18] L. Xu, Y. Liu, Z. Chen, W. Li, Y. Liu, L. Wang, Y. Liu, X. Wu, Y. Ji, Y. Zhao, L. Ma, Y. Shao, and C. Chen," Surface-Engineered Gold Nanorods: Promising DNA Vaccine Adjuvant for HIV-1 Treatment". Nano Lett., vol. 12, pp. 2003-2012, 2012.
    [19] H. Maeda, G.Y. Bharate, and J. Daruwalla," Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect". European Journal of Pharmaceutics and Biopharmaceutics, vol. 71, pp. 409-419, 2009.
    [20] Q. He, and J. Shi," Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility". Journal of Materials Chemistry, vol. 21, pp. 5845-5855, 2011.
    [21] F. Wang, Y.-C. Wang, S. Dou, M.-H. Xiong, T.-M. Sun, and J. Wang," Doxorubicin-Tethered Responsive Gold Nanoparticles Facilitate Intracellular Drug Delivery for Overcoming Multidrug Resistance in Cancer Cells". Acs Nano, vol. 5, pp. 3679-3692, 2011.
    [22] L.Y.T. Chou, K. Ming, and W.C.W. Chan," Strategies for the intracellular delivery of nanoparticles". Chemical Society Reviews, vol. 40, pp. 233-245, 2011.
    [23] N. Oh, and J.-H. Park," Endocytosis and Exocytosis of Nanoparticles in Mammalian Cells". International journal of nanomedicine, vol. 9, pp. 51, 2014.
    [24] Ligand Receives FDA Approval for ONTAK for Treatment of Patients with Cutaneous T-Cell Lymphoma; Marks Ligand's Second Commercial Product., The Free Library, 1999.
    [25] I. Gilead Sciences," FDA Approves AmBisome® for the Treatment of Cryptococcal Meningitis in AIDS Patients, 2000.
    [26] European CPMP Recommends Approval of MYOCET (Formerly Known As EVACET(TM)) to Treat Metastatic Breast Cancer., The Free Library, 2000.
    [27] T.F. Library," Schering-Plough Announces EU Approval of CAELYX(R) in Metastatic Breast Cancer., 2003.
    [28] N.C.I.a.t.N.I.o. Health," FDA Approval for Doxorubicin Hydrochloride Liposome, 2013.
    [29] FDA Clears Nymox's NicAlert., The Free Library, 2002.
    [30] Dade Behring's Stratus CS Receives FDA Clearance for Its D-dimer Method; Important Test Can Assist in the Differentiation of Chest Pain., The Free Library, 2003.
    [31] Immunicon Corporation Announces Receipt by Veridex of Additional 510(k) Clearance for the CellSearch(TM) Circulating Tumor Cell Kit., The Free Library, 2005.
    [32] FDA Approves ABRAXANE(TM), First in New Class of Protein-Bound Particle Drugs, for Metastatic Breast Cancer., The Free Library, 2005.
    [33] SkyePharma Receives FDA Approval For Triglide(TM) A Novel Formulation Of Fenofibrate., The Free Library, 2005.
    [34] Nanosphere Announces FDA Clearance of Second Molecular Diagnostics Assay., The Free Library, 2007.
    [35] Drugs.com," FDA Approves Genzyme's Renvela for Dialysis Patients, 2007.
    [36] VivaGel phase 3 study results, Starpharma Holdings, 2012.
    [37] Introgen Therapeutics Company Profile, Introgen Therapeutics Inc., 2014.
    [38] B. Roszek, W.H. De Jong, and R.E. Geertsma," Nanotechnology in medical applications: state-of-the-art in materials and devices". vol., 2005.
    [39] THERMODOX®, Celsion Corporation, 2014.
    [40] AURIMUNE PLATFORM PRODUCTS, CytImmun Sciences Inc., 2014.
    [41] J.A. Schwartz, A.M. Shetty, R.E. Price, R.J. Stafford, J.C. Wang, R.K. Uthamanthil, K. Pham, R.J. McNichols, C.L. Coleman, and J.D. Payne," Feasibility Study of Particle-Assisted Laser Ablation of Brain Tumors in Orthotopic Canine Model". Cancer research, vol. 69, pp. 1659-1667, 2009.
    [42] E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, and M.D. Wyatt," Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity". Small, vol. 1, pp. 325-327, 2005.
    [43] P.V. AshaRani, G. Low Kah Mun, M.P. Hande, and S. Valiyaveettil," Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells". Acs Nano, vol. 3, pp. 279-290, 2008.
    [44] Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L.-h. Wang, P. Shen, and Q. Huang," The Cytotoxicity of CdTe Quantum Dots and the Relative Contributions from Released Cadmium Ions and Nanoparticle Properties". Biomaterials, vol. 31, pp. 4829-4834, 2010.
    [45] N. Chen, Y. He, Y. Su, X. Li, Q. Huang, H. Wang, X. Zhang, R. Tai, and C. Fan," The Cytotoxicity of Cadmium-based Quantum Dots". Biomaterials, vol. 33, pp. 1238-1244, 2012.
    [46] I.H. El-Sayed, X. Huang, and M.A. El-Sayed," Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles". Cancer Letters, vol. 239, pp. 129-135, 2006.
    [47] S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov," Plasmonic Nanosensors for Imaging Intracellular Biomarkers in Live Cells". Nano Lett., vol. 7, pp. 1338-1343, 2007.
    [48] M.L. Juan, M. Righini, and R. Quidant," Plasmon nano-optical tweezers". Nat Photon, vol. 5, pp. 349-356, 2011.
    [49] S. Link, and M.A. El-Sayed," Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles". J. Phys. Chem. B, vol. 103, pp. 4212-4217, 1999.
    [50] M.A. van Dijk, A.L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis," Absorption and Scattering Microscopy of Single Metal Nanoparticles". Phys. Chem. Chem. Phys., vol. 8, pp. 3486-3495, 2006.
    [51] S.H. Wang, C.W. Lee, A. Chiou, and P.K. Wei," Size-Dependent Endocytosis of Gold Nanoparticles Studied by Three-Dimensional Mapping of Plasmonic Scattering Images". J Nanobiotechnology, vol. 8, pp. 33-45, 2010.
    [52] K.H. Su, Q.H. Wei, X. Zhang, J.J. Mock, D.R. Smith, and S. Schultz," Interparticle coupling effects on plasmon resonances of nanogold particles". Nano Lett., vol. 3, pp. 1087-1090, 2003.
    [53] Z. Yang, S. Chen, P. Fang, B. Ren, H.H. Girault, and Z. Tian," LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface". Physical Chemistry Chemical Physics, vol. 15, pp. 5374-5378, 2013.
    [54] L.O. Herrmann, V.K. Valev, J. Aizpurua, and J.J. Baumberg," Self-sifting of chain plasmons: the complex optics of Au nanoparticle clusters". Opt. Express, vol. 21, pp. 32377-32385, 2013.
    [55] P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed," Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine". Journal of Physical Chemistry B, vol. 110, pp. 7238-7248, 2006.
    [56] P. Aggarwal, J.B. Hall, C.B. McLeland, M.A. Dobrovolskaia, and S.E. McNeil," Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy". Advanced Drug Delivery Reviews, vol. 61, pp. 428-437, 2009.
    [57] C.D. Walkey, and W.C.W. Chan," Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment". Chemical Society Reviews, vol. 41, pp. 2780-2799, 2012.
    [58] R. Tedja, M. Lim, R. Amal, and C. Marquis," Effects of Serum Adsorption on Cellular Uptake Profile and Consequent Impact of Titanium Dioxide Nanoparticles on Human Lung Cell Lines". Acs Nano, vol. 6, pp. 4083-4093, 2012.
    [59] A. Albanese, and W.C.W. Chan," Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity". Acs Nano, vol. 5, pp. 5478-5489, 2011.
    [60] A.E. Nel, L. Mädler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson," Understanding biophysicochemical interactions at the nano-bio interface". Nature Materials, vol. 8, pp. 543-557, 2009.
    [61] B.D. Chithrani, A.A. Ghazani, and W.C.W. Chan," Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells". Nano Lett., vol. 6, pp. 662-668, 2006.
    [62] P. Nativo, I.A. Prior, and M. Brust," Uptake and Intracellular Fate of Surface-Modified Gold Nanoparticles". Acs Nano, vol. 2, pp. 1639-1644, 2008.
    [63] A.M. Alkilany, P.K. Nagaria, C.R. Hexel, T.J. Shaw, C.J. Murphy, and M.D. Wyatt," Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects". Small, vol. 5, pp. 701-708, 2009.
    [64] C. Brandenberger, C. Mühlfeld, Z. Ali, A.-G. Lenz, O. Schmid, W.J. Parak, P. Gehr, and B. Rothen-Rutishauser," Quantitative Evaluation of Cellular Uptake and Trafficking of Plain and Polyethylene Glycol-Coated Gold Nanoparticles". Small, vol. 6, pp. 1669-1678, 2010.
    [65] Z. Krpetic, S. Saleemi, I.A. Prior, V. Sée, R. Qureshi, and M. Brust," Negotiation of Intracellular Membrane Barriers by TAT-Modified Gold Nanoparticles". Acs Nano, vol. 5, pp. 5195-5201, 2011.
    [66] W. Qian, X. Huang, B. Kang, and M.A. El-Sayed," Dark-Field Light Scattering Imaging of Living Cancer Cell Component from Birth Through Division Using Bioconjugated Gold Nanoprobes". Journal of Biomedical Optics, vol. 15, pp. 046025-046025, 2010.
    [67] W. Jiang, B.Y.S. Kim, J.T. Rutka, and W.C.W. Chan," Nanoparticle-Mediated Cellular Response is Size-Dependent". Nature Nanotechnology, vol. 3, pp. 145-150, 2008.
    [68] K.C. Nicola E. Cant, Hao-Li Zhang, Stephen D. Evans," Surface functionalisation for the self-assembly of nanoparticle/polymer multilayer films". Thin Solid Films, vol. 426, pp. 31-39, 2003.
    [69] E.C. Cho, J.W. Xie, P.A. Wurm, and Y.N. Xia," Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I2/KI Etchant". Nano Lett., vol. 9, pp. 1080-1084, 2009.
    [70] C.C. Fleischer, and C.K. Payne," Nanoparticle-Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes". Accounts of Chemical Research, vol. 47, pp. 2651-2659, 2014.
    [71] R.E. James J. Storhoff, Robert C. Mucic, Chad A. Mirkin, and Robert L. Letsinger," One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes". J. Am. Chem. Soc., vol. 120, pp. 1959-1964, 1998.
    [72] S.S. Björn M. Reinhard, Alexander Mastroianni, A. Paul Alivisatos, and Jan Liphardt," Use of Plasmon Coupling to Reveal the Dynamics of DNA Bending and Cleavage by Single EcoRV Restriction Enzymes". Proc. Natl. Acad Sci. U.S.A, vol. 104, pp. 2667-2672, 2007.
    [73] J. Aaron, K. Travis, N. Harrison, and K. Sokolov," Dynamic Imaging of Molecular Assemblies in Live Cells Based on Nanoparticle Plasmon Resonance Coupling". Nano Lett., vol. 9, pp. 3612-3618, 2009.
    [74] H. Wang, G. Rong, B. Yan, L. Yang, and B.M. Reinhard," Optical Sizing of Immunolabel Clusters through Multispectral Plasmon Coupling Microscopy". Nano Lett., vol. 11, pp. 498-504, 2011.
    [75] C.J. Du, and D.W. Sun," Comparison of Three Methods for Classification of Pizza Topping Using Different Colour Space Transformations". Journal of Food Engineering, vol. 68, pp. 277-287, 2005.
    [76] N. Boughen," Lightwave 3D 7.5 Lighting", Wordware Publishing, Inc., 2003.
    [77] A.M. Spalter," The Computer in the Visual Arts", Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.
    [78] M. Mächler," Rainbow in the RGB Space, 2011.
    [79] H. Wang, L. Wu, and B.M. Reinhard," Scavenger receptor mediated endocytosis of silver nanoparticles into J774A. 1 macrophages is heterogeneous". Acs Nano, vol. 6, pp. 7122-7132, 2012.
    [80] W.S.M. Werner," Surface and bulk plasmon coupling observed in reflection electron energy loss spectra". Surface Science, vol. 526, pp. L159-L164, 2003.
    [81] R.N. Strickland, C.-S. Kim, and W.F. McDonnell," Digital Color Image Enhancement Based on the Saturation Component". Opt. Eng., vol. 26, pp. 609-616, 1987.
    [82] D.S. Kohane," Microparticles and Nanoparticles for Drug Delivery". Biotechnology and bioengineering, vol. 96, pp. 203-209, 2007.
    [83] M. De, P.S. Ghosh, and V.M. Rotello," Applications of Nanoparticles in Biology". Advanced Materials, vol. 20, pp. 4225-4241, 2008.
    [84] D.A. Giljohann, D.S. Seferos, W.L. Daniel, M.D. Massich, P.C. Patel, and C.A. Mirkin," Gold Nanoparticles for Biology and Medicine". Angewandte Chemie International Edition, vol. 49, pp. 3280-3294, 2010.
    [85] A. Lesniak, A. Salvati, M.J. Santos-Martinez, M.W. Radomski, K.A. Dawson, and C. Åberg," Nanoparticle Adhesion to the Cell Membrane and Its Effect on Nanoparticle Uptake Efficiency". J. Am. Chem. Soc., vol. 135, pp. 1438-1444, 2013.
    [86] J.M. de la Fuente, C.C. Berry, M.O. Riehle, and A.S.G. Curtis," Nanoparticle Targeting at Cells". Langmuir, vol. 22, pp. 3286-3293, 2006.
    [87] R.R. Arvizo, O.R. Miranda, M.A. Thompson, C.M. Pabelick, R. Bhattacharya, J.D. Robertson, V.M. Rotello, Y.S. Prakash, and P. Mukherjee," Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond". Nano Lett., vol. 10, pp. 2543-2548, 2010.
    [88] M. Pekker, and M.N. Shneider," The Surface Charge of a Cell Lipid Membrane". arXiv preprint arXiv:1401.4707, vol., 2014.
    [89] O. Boussif, F. Lezoualc'h, M.A. Zanta, M.D. Mergny, D. Scherman, B. Demeneix, and J.-P. Behr," A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in vivo: Polyethylenimine". Proceedings of the National Academy of Sciences, vol. 92, pp. 7297-7301, 1995.
    [90] C. Rosman, S. Pierrat, A. Henkel, M. Tarantola, D. Schneider, E. Sunnick, A. Janshoff, and C. Sönnichsen," A New Approach to Assess Gold Nanoparticle Uptake by Mammalian Cells: Combining Optical Dark-Field and Transmission Electron Microscopy". Small, vol. 8, pp. 3683-3690, 2012.
    [91] D.A. Giljohann, D.S. Seferos, P.C. Patel, J.E. Millstone, N.L. Rosi, and C.A. Mirkin," Oligonucleotide Loading Determines Cellular Uptake of DNA-Modified Gold Nanoparticles". Nano Lett., vol. 7, pp. 3818-3821, 2007.
    [92] A. Lesniak, F. Fenaroli, M.P. Monopoli, C. berg, K.A. Dawson, and A. Salvati," Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells". Acs Nano, vol. 6, pp. 5845-5857, 2012.
    [93] R. Gaspar," Nanoparticles: Pushed off Target with Proteins". Nature Nanotechnology, vol. 8, pp. 79-80, 2013.
    [94] M.E. Aubin-Tam, and K. Hamad Schifferli," Gold Nanoparticle-Cytochrome c Complexes:The Effect of Nanoparticle Ligand Charge on Protein Structure". Langmuir, vol. 21, pp. 12080-12084, 2005.
    [95] C.C. Fleischer, and C.K. Payne," Nanoparticle Surface Charge Mediates the Cellular Receptors Used by Protein-Nanoparticle Complexes". The Journal of Physical Chemistry B, vol. 116, pp. 8901-8907, 2012.
    [96] B.D. Chithrani, J. Stewart, C. Allen, and D.A. Jaffray," Intracellular Uptake, Transport, and Processing of Nanostructures in Cancer Cells". Nanomedicine: Nanotechnology, Biology and Medicine, vol. 5, pp. 118-127, 2009.
    [97] S.D. Conner, and S.L. Schmid," Regulated portals of entry into the cell". Nature, vol. 422, pp. 37-44, 2003.
    [98] H.J. Gao, W.D. Shi, and L.B. Freund," Mechanics of Receptor-Mediated Endocytosis". PNAS, vol. 102, pp. 9469-9474, 2005.
    [99] P. Decuzzi, and M. Ferrari," The Role of Specific and Non-Specific Interactions in Receptor-Mediated Endocytosis of Nanoparticles". Biomaterials, vol. 28, pp. 2915-2922, 2007.
    [100] S. Zhang, J. Li, G. Lykotrafitis, G. Bao, and S. Suresh," Size-Dependent Endocytosis of Nanoparticles". Advanced Materials, vol. 21, pp. 419-424, 2009.
    [101] K. Unfried, C. Albrecht, L.-O. Klotz, A.V. Mikecz, S. Grether-Beck, and R.P.F. Schins," Cellular Responses to Nanoparticles: Target Structures and Mechanisms". Nanotoxicology, vol. 1, pp. 52-71, 2007.
    [102] E. Macia, M. Ehrlich, R. Massol, E. Boucrot, C. Brunner, and T. Kirchhausen," Dynasore, a Cell-Permeable Inhibitor of Dynamin". Developmental Cell, vol. 10, pp. 839-850, 2006.
    [103] T. Kirchhausen, E. Macia, H.E. Pelish, C.J.D. William E. Balch, and H. Alan," Use of Dynasore, the Small Molecule Inhibitor of Dynamin, in the Regulation of Endocytosis, Methods in Enzymology, Academic Press, 2008, pp. 77-93.
    [104] S.H. Wang, C.W. Lee, M.Y. Pan, S.Y. Hsieh, F.G. Tseng, and P.K. Wei," Chromatogram Analysis on Revealing Aggregated Number and Location of Gold Nanoparticles Within Living Cells". Plasmonics, vol., pp. 1-8, 2014.
    [105] J. Rejman, V. Oberle, I. Zuhorn, and D. Hoekstra," Size-Dependent Internalization of Particles via the Pathways of Clathrin- and Caveolae-Mediated Endocytosis". Biochem. J, vol. 377, pp. 159-169, 2004.
    [106] A. Salvati, C. Åberg, T.d. Santos, J. Varela, P. Pinto, I. Lynch, and K.A. Dawson," Experimental and Theoretical Comparison of Intracellular Import of Polymeric Nanoparticles and Small Molecules: Toward Models of Uptake Kinetics". Nanomedicine: Nanotechnology, Biology and Medicine, vol. 7, pp. 818-826, 2011.
    [107] B. Sönnichsen, S. De Renzis, E. Nielsen, J. Rietdorf, and M. Zerial," Distinct Membrane Domains on Endosomes in the Recycling Pathway Visualized by Multicolor Imaging of Rab4, Rab5, and Rab11". The Journal of cell biology, vol. 149, pp. 901-914, 2000.
    [108] P. Barbero, L. Bittova, and S.R. Pfeffer," Visualization of Rab9-mediated Vesicle Transport from Endosomes to the Trans-Golgi in Living Cells". The Journal of cell biology, vol. 156, pp. 511-518, 2002.
    [109] R.A. Dragovic, C. Gardiner, A.S. Brooks, D.S. Tannetta, D.J.P. Ferguson, P. Hole, B. Carr, C.W.G. Redman, A.L. Harris, P.J. Dobson, P. Harrison, and I.L. Sargent," Sizing and Phenotyping of Cellular Vesicles Using Nanoparticle Tracking Analysis". Nanomedicine: Nanotechnology, Biology and Medicine, vol. 7, pp. 780-788, 2011.
    [110] L. Foret, J.E. Dawson, R. Villaseñor, C. Collinet, A. Deutsch, L. Brusch, M. Zerial, Y. Kalaidzidis, and F. Jülicher," A General Theoretical Framework to Infer Endosomal Network Dynamics from Quantitative Image Analysis". Current Biology, vol. 22, pp. 1381-1390, 2012.
    [111] J. Chen, and J. Irudayaraj," Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanorods in live cells by single molecule spectroscopy". Acs Nano, vol. 3, pp. 4071-4079, 2009.
    [112] S. Roger, J. Rollin, A. Barascu, P. Besson, P.-I. Raynal, S. Iochmann, M. Lei, P. Bougnoux, Y. Gruel, and J.-Y. Le Guennec," Voltage-gated Sodium Channels Potentiate the Invasive Capacities of Human Non-small-cell Lung Cancer Cell Lines". The International Journal of Biochemistry & Cell Biology, vol. 39, pp. 774-786, 2007.
    [113] B.D. Chithrani, and W.C.W. Chan," Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes". Nano Lett., vol. 7, pp. 1542-1550, 2007.
    [114] J. Panyam, and V. Labhasetwar," Dynamics of Endocytosis and Exocytosis of Poly(D,L-Lactide-co -Glycolide) Nanoparticles in Vascular Smooth Muscle Cells". Pharmaceutical Research, vol. 20, pp. 212-220, 2003.
    [115] H. Hillaireau, and P. Couvreur," Nanocarriers' Entry into the Cell: Relevance to Drug Delivery". Cellular and Molecular Life Sciences, vol. 66, pp. 2873-2896, 2009.
    [116] Z.M. Qian, H. Li, H. Sun, and K. Ho," Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway". Pharmacological reviews, vol. 54, pp. 561-587, 2002.
    [117] F.R. Maxfield, and T.E. McGraw," Endocytic Recycling". Nature Reviews Molecular Cell Biology, vol. 5, pp. 121-132, 2004.
    [118] L. Guillot, R. Le Goffic, S. Bloch, N. Escriou, S. Akira, M. Chignard, and M. Si-Tahar," Involvement of Toll-like Receptor 3 in the Immune Response of Lung Epithelial Cells to Double-stranded RNA and Influenza A Virus". Journal of Biological Chemistry, vol. 280, pp. 5571-5580, 2005.
    [119] G.V. Limmon, M. Arredouani, K.L. McCann, R.A.C. Minor, L. Kobzik, and F. Imani," Scavenger receptor class-A is a novel cell surface receptor for double-stranded RNA". The FASEB Journal, vol. 22, pp. 159-167, 2008.
    [120] D.R. Sheff, E.A. Daro, M. Hull, and I. Mellman," The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions". The Journal of cell biology, vol. 145, pp. 123-139, 1999.
    [121] K. Haglund, and I. Dikic," The role of ubiquitylation in receptor endocytosis and endosomal sorting". Journal of cell science, vol. 125, pp. 265-275, 2012.
    [122] L. Wang, Y. Liu, W. Li, X. Jiang, Y. Ji, X. Wu, L. Xu, Y. Qiu, K. Zhao, T. Wei, Y. Li, Y. Zhao, and C. Chen," Selective Targeting of Gold Nanorods at the Mitochondria of Cancer Cells: Implications for Cancer Therapy". Nano Lett., vol. 11, pp. 772-780, 2011.
    [123] G. Rong, H. Wang, L.R. Skewis, and B.M. Reinhard," Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy". Nano Lett., vol. 8, pp. 3386-3393, 2008.
    [124] M. Bartneck, H.A. Keul, S. Singh, K. Czaja, J. Bornemann, M. Bockstaller, M. Moeller, G. Zwadlo-Klarwasser, and J. Groll," Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry". Acs Nano, vol. 4, pp. 3073-3086, 2010.
    [125] A. Villanueva, M. Canete, A.G. Roca, M. Calero, S. Veintemillas-Verdaguer, C.J. Serna, M. del Puerto Morales, and R. Miranda," The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells". Nanotechnology, vol. 20, pp. 115103, 2009.
    [126] H. Jin, D.A. Heller, R. Sharma, and M.S. Strano," Size-Dependent Cellular Uptake and Expulsion of Single-Walled Carbon Nanotubes: Single Particle Tracking and a Generic Uptake Model for Nanoparticles". Acs Nano, vol. 3, pp. 149-158, 2009.
    [127] C. He, Y. Hu, L. Yin, C. Tang, and C. Yin," Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles". Biomaterials, vol. 31, pp. 3657-3666, 2010.
    [128] K.Y. Win, and S.-S. Feng," Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs". Biomaterials, vol. 26, pp. 2713-2722, 2005.
    [129] L. Zhang, W. Fischer, E. Pippel, G. Hause, M. Brandsch, and M. Knez," Receptor-Mediated Cellular Uptake of Nanoparticles: A Switchable Delivery System". Small, vol. 7, pp. 1538-1541, 2011.
    [130] N. Lewinski, V. Colvin, and R. Drezek," Cytotoxicity of nanoparticles". Small, vol. 4, pp. 26-49, 2008.
    [131] Y. Liu, Y. Zhao, B. Sun, and C. Chen," Understanding the toxicity of carbon nanotubes". Accounts of Chemical Research, vol. 46, pp. 702-713, 2012.
    [132] R.F. Service," Nanotechnology. Nanoparticle Trojan horses gallop from the lab into the clinic". Science, vol. 330, pp. 314, 2010.
    [133] J.F. Kukowska-Latallo, K.A. Candido, Z. Cao, S.S. Nigavekar, I.J. Majoros, T.P. Thomas, L.P. Balogh, M.K. Khan, and J.R. Baker," Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer". Cancer research, vol. 65, pp. 5317-5324, 2005.
    [134] E.-J. Park, J. Yi, Y. Kim, K. Choi, and K. Park," Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism". Toxicology in Vitro, vol. 24, pp. 872-878, 2010.
    [135] F. Wang, L. Yu, M.P. Monopoli, P. Sandin, E. Mahon, A. Salvati, and K.A. Dawson," The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes". Nanomedicine: Nanotechnology, Biology and Medicine, vol. 9, pp. 1159-1168, 2013.
    [136] S. Sabella, R.P. Carney, V. Brunetti, M.A. Malvindi, N. Al-Juffali, G. Vecchio, S.M. Janes, O.M. Bakr, R. Cingolani, and F. Stellacci," A general mechanism for intracellular toxicity of metal-containing nanoparticles". Nanoscale, vol. 6, pp. 7052-7061, 2014.
    [137] N.W. Shi Kam, T.C. Jessop, P.A. Wender, and H. Dai," Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells". Journal of the American Chemical Society, vol. 126, pp. 6850-6851, 2004.
    [138] P. Wick, P. Manser, L.K. Limbach, U. Dettlaff-Weglikowska, F. Krumeich, S. Roth, W.J. Stark, and A. Bruinink," The degree and kind of agglomeration affect carbon nanotube cytotoxicity". Toxicology letters, vol. 168, pp. 121-131, 2007.
    [139] M. Bottini, S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, and T. Mustelin," Multi-walled carbon nanotubes induce T lymphocyte apoptosis". Toxicology letters, vol. 160, pp. 121-126, 2006.
    [140] A.G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M.F. Anderson, S. Franzen, and D.L. Feldheim," Multifunctional gold nanoparticle-peptide complexes for nuclear targeting". Journal of the American Chemical Society, vol. 125, pp. 4700-4701, 2003.
    [141] N. Pernodet, X. Fang, Y. Sun, A. Bakhtina, A. Ramakrishnan, J. Sokolov, A. Ulman, and M. Rafailovich," Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts". Small, vol. 2, pp. 766-773, 2006.
    [142] C.-H. Su, H.-S. Sheu, C.-Y. Lin, C.-C. Huang, Y.-W. Lo, Y.-C. Pu, J.-C. Weng, D.-B. Shieh, J.-H. Chen, and C.-S. Yeh," Nanoshell magnetic resonance imaging contrast agents". Journal of the American Chemical Society, vol. 129, pp. 2139-2146, 2007.
    [143] T.B. Huff, M.N. Hansen, Y. Zhao, J.-X. Cheng, and A. Wei," Controlling the Cellular Uptake of Gold Nanorods". Langmuir, vol. 23, pp. 1596-1599, 2007.
    [144] C. Corot, P. Robert, J.-M. Id矇e, and M. Port," Recent advances in iron oxide nanocrystal technology for medical imaging". Advanced Drug Delivery Reviews, vol. 58, pp. 1471-1504, 2006.
    [145] H. Duan, and S. Nie," Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings". Journal of the American Chemical Society, vol. 129, pp. 3333-3338, 2007.
    [146] J. Lovri, S.J. Cho, F.M. Winnik, and D. Maysinger," Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death". Chemistry & biology, vol. 12, pp. 1227-1234, 2005.
    [147] S. Patskovsky, E. Bergeron, D. Rioux, and M. Meunier," Wide-field hyperspectral 3D imaging of functionalized gold nanoparticles targeting cancer cells by reflected light microscopy". Journal of biophotonics, vol. 5, pp. 401-407, 2014.
    [148] A. Verma, O. Uzun, Y. Hu, Y. Hu, H.-S. Han, N. Watson, S. Chen, D.J. Irvine, and F. Stellacci," Surface-structure-regulated Cell-membrane Penetration by Monolayer-protected Nanoparticles". Nature Materials, vol. 7, pp. 588-595, 2008.
    [149] M.L. Etheridge, S.A. Campbell, A.G. Erdman, C.L. Haynes, S.M. Wolf, and J. McCullough," The Big Picture on Nanomedicine: The State of Investigational and Approved Nanomedicine Products". Nanomedicine: Nanotechnology, Biology and Medicine, vol. 9, pp. 1-14, 2013.
    [150] A. Shapira, Y.D. Livney, H.J. Broxterman, and Y.G. Assaraf," Nanomedicine for Targeted Cancer Therapy: Towards the Overcoming of Drug Resistance". Drug resistance updates, vol. 14, pp. 150-163, 2014.
    [151] Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent," Size-Dependent Cytotoxicity of Gold Nanoparticles". Small, vol. 3, pp. 1941-1949, 2007.
    [152] C.M. Goodman, C.D. McCusker, T. Yilmaz, and V.M. Rotello," Toxicity of gold nanoparticles functionalized with cationic and anionic side chains". Bioconjugate Chem., vol. 15, pp. 897-900, 2004.
    [153] T. Mironava, M. Hadjiargyrou, M. Simon, V. Jurukovski, and M.H. Rafailovich," Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time". Nanotoxicology, vol. 4, pp. 120-137, 2010.
    [154] J. Davda, and V. Labhasetwar," Characterization of Nanoparticle Uptake by Endothelial Cells". International Journal of Pharmaceutics, vol. 233, pp. 51-59, 2002.
    [155] N.M. Schaeublin, L.K. Braydich-Stolle, A.M. Schrand, J.M. Miller, J. Hutchison, J.J. Schlager, and S.M. Hussain," Surface charge of gold nanoparticles mediates mechanism of toxicity". Nanoscale, vol. 3, pp. 410-420, 2011.
    [156] X. Ma, Y. Wu, S. Jin, Y. Tian, X. Zhang, Y. Zhao, L. Yu, and X.-J. Liang," Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment". Acs Nano, vol. 5, pp. 8629-8639, 2011.
    [157] S.H. Wang, C.W. Lee, M.Y. Pan, S.Y. Hsieh, F.G. Tseng, and P.K. Wei," Chromatogram Analysis on Revealing Aggregated Number and Location of Gold Nanoparticles Within Living Cells". Plasmonics, vol. 10, pp. 873-880, 2015.
    [158] B.D. Chithrani," Intracellular uptake, transport, and processing of gold nanostructures". Molecular Membrane Biology, vol. 27, pp. 299-311, 2010.
    [159] G. Giannone, B.J. Dubin-Thaler, H.-G. Döbereiner, N. Kieffer, A.R. Bresnick, and M.P. Sheetz," Periodic Lamellipodial Contractions Correlate with Rearward Actin Waves". Cell, vol. 116, pp. 431-443, 2004.
    [160] B. Qualmann, M.M. Kessels, and R.B. Kelly," Molecular links between endocytosis and the actin cytoskeleton". The Journal of cell biology, vol. 150, pp. F111-F116, 2000.
    [161] T.-G. Iversen, T. Skotland, and K. Sandvig," Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies". Nano Today, vol. 6, pp. 176-185, 2011.
    [162] S.J. Soenen, P. Rivera-Gil, J.-M. Montenegro, W.J. Parak, S.C. De Smedt, and K. Braeckmans," Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation". Nano Today, vol. 6, pp. 446-465, 2011.
    [163] E.M. Redmond, P.A. Cahill, M. Hirsch, Y.-N. Wang, J.V. Sitzmann, and S.S. Okada," Effect of pulse pressure on vascular smooth muscle cell migration: the role of urokinase and matrix metalloproteinase". Thromb Haemost, vol. 81, pp. 293-300, 1999.
    [164] D.D. Nalayanda, W.B. Fulton, P.M. Colombani, T.-H. Wang, and F. Abdullah," Pressure induced lung injury in a novel in vitro model of the alveolar interface: protective effect of dexamethasone". Journal of pediatric surgery, vol. 49, pp. 61-65, 2014.
    [165] N.J. Douville, P. Zamankhan, Y.-C. Tung, R. Li, B.L. Vaughan, C.-F. Tai, J. White, P.J. Christensen, J.B. Grotberg, and S. Takayama," Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model". Lab on a chip, vol. 11, pp. 609-619, 2010.
    [166] J.A. Joyce, and J.W. Pollard," Microenvironmental regulation of metastasis". Nature Reviews Cancer, vol. 9, pp. 239-252, 2009.
    [167] A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H.-H. Gerdes," Nanotubular highways for intercellular organelle transport". science, vol. 303, pp. 1007-1010, 2004.
    [168] H.-H. Gerdes, and R.N. Carvalho," Intercellular transfer mediated by tunneling nanotubes". Current opinion in cell biology, vol. 20, pp. 470-475, 2008.
    [169] P.D. Arkwright, F. Luchetti, J. Tour, C. Roberts, R. Ayub, A.P. Morales, J.J. Rodríguez, A. Gilmore, B. Canonico, and S. Papa," Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes". Cell research, vol. 20, pp. 72-88, 2010.
    [170] X. Wang, and H.H. Gerdes," Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells". Cell Death & Differentiation, vol. 22, pp. 1181-1191, 2015.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE