研究生: |
吳志輝 Chih-Hui Wu |
---|---|
論文名稱: |
利用路徑積分方法探討一維奈米線上的邊界效應 Investigation of Boundary Effects in Semi-infinite Nanowires Using the Method of Functional Integral Bosonization |
指導教授: |
牟中瑜
Chung-Yu Mou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 波色化 、奈米線 、邊界效應 |
外文關鍵詞: | bosonization, nanowire, boundary effect |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們利用路徑積分的方式來探討庫倫作用力下的一維奈米線系統,並且延伸了這套方法來處理有sub-lattice以及有邊界的情形。在這種情形裡某些條件下會有邊界態的存在,利用平均場的方法此一邊界態可以被視為在邊界附近的雜質。利用這套路徑積分的方法,我們可以求出有邊界態時系統的配分函數,並且根據這個配分函數將這個系統波色化。結果發現由於邊界的效應,邊界態的存在並不會對系統有明顯的影響。這個路徑積分的方法有別於一般處理庫倫作用下一維系統的波色化方法,我們也比較了這兩種方法間的關聯。
In this thesis we extend the method of functional integral bosonization to investigate one dimensional systems with sub-lattices and boundaries. In the presence of an edge state, which is treated as an impurity near the edge, the functional form of the partition function can be derived and therefore the system can be properly bosonized. It turns out that due to the boundary effect, as long as the decay length of the edge state is much shorter than the electron-electron correlation length, the edge state has no significant influence to the partition function of this system.
1. I. V. Yurkevich, cond-mat/0112270v2 (2002)
2. Alex Grishin, Igor V. Yurkevich and Igor V. Lerner, cond-mat/0307438 (2003)
3. M. Fabrizio and Alexander O. Gogolin, Phys. Rev. B51, 17827(1995)
4. V. Meden, W. Metzner, U. Schollwock, and K. Schonhammer, cond-mat/0109013v2 (2001)
5. Naoto Nagaosa, Quantum Field Theory in Strongly Correlated Electronic Systems (Springer, 1998)
6. Bor-Luen Huang, S. T. Wu, and Chung-Yu Mou, Phys. Rev. B70, 205408 (2004)
7. David Senechal, cond-mat/9908262 (1999)