簡易檢索 / 詳目顯示

研究生: 林志陽
Lin, Chih Yang
論文名稱: 咖啡質傳
Mass Transfer of Coffee Bean
指導教授: 胡塵滌
Hu, Chen Ti
李三保
Lee, Sanboh
口試委員: 楊聰仁
Yang, Tsung Jen
蔣東堯
Chiang, Don Yau
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 84
中文關鍵詞: 咖啡咖啡因萃取咖啡擴散數學模型
外文關鍵詞: coffee, caffeine extraction, coffee diffusion, mathematical modeling
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討在咖啡豆過程中的質傳行為,主要研究分為兩個部分,一是咖啡因萃取:對於部分人來說,咖啡的醇厚的風味及高度變化性,雖令人欲罷不能,卻因為攝入咖啡因導致心悸、緊張、頭痛……等作用,在這樣的市場需求下,去咖啡因製程因此產生,本篇論文提出半球體咖啡因萃取模型,探討一顆咖啡豆的咖啡因萃取現象,比現有的文獻更能簡單並精準描述萃取現象。並對實驗數據進行曲線擬合,探討咖啡豆微結構、咖啡因萃取、化學成分與活化能之間的關係。
    第二部分是不同支咖啡豆所泡出的咖啡液在水中的擴散現象,我們將咖啡液滴入水中,記錄咖啡液半徑大小隨時間的關係,並探討咖啡液擴散與黏度的關係。


    In this paper, caffeine extraction and coffee diffusion in water have been discussed.
    For some people, caffeine can bring about unpleasant symptoms such as nervousness, headache, and palpitation. The decaffeination processes were therefore developed to remove caffeine and keep the flavors locked in the coffee beans simultaneously. The model of caffeine extraction for hemispherical beans was derived, and the data were curve fitted. Then the results of extraction of caffeine from green beans and roasted beans were discussed.
    In the second part, the different roasted coffee beans were ground and brewed for experiments. The coffee was dripped in the center of flat disk which was filled with water to a depth of 0.5 cm. The fronts of three different kinds of coffee at different temperatures were plotted as functions of time, respectively. After these data were curve fitted, the Arrhenius plots of diffusivity could be obtained. The relation between diffusivity and viscosity of different coffee samples were compared and discussed.

    摘要.................................................................................................................................I Abstract………………………………………………………………………………..II 致謝..............................................................................................................................III List of Tables………………………………………………………………………...V Figure captions..……………………………………………………………………...VI Chapter 1 Introduction…………………………………………………………………1 Chapter 2 Theory………………………………………………………………………5 Chapter 3 Experimental details……………………………………………………….13 Chapter 4 Results and discussion…………………………………………………......25 Chapter 5 Conclusions……………………………………………………………......35 References……………………………………………………………………………37

    1. R. D. De Castro and P. Marraccini, Cytology, biochemistry and molecular changes during coffee fruit development, Brazilian Journal of Plant Physiology, 18, pp. 175-199 (2006).
    2. M. J. Arnaud, Caffeine, Encyclopedia of Human Nutrition, second edition, Elsevier, Amsterdam, Netherlands, pp. 247-253 (2005).
    3. A. Belay, K. Ture, M. Redi, and A. Asfaw, Measurement of caffeine in coffee beans with UV/vis spectrometer, Food Chemistry, 108, pp.310-315 (2008).
    4. T. Atomssa and A.V. Gholap, Characterization of caffeine and determination of caffeine in tea leaves using uv-visible spectrometer, African Journal of Pure and Applied Chemistry, 5 (1), pp. 1-8 (2011).
    5. B. Bichsel, Diffusion phenomena during the decaffeination of coffee beans, Food Chemistry, 4 (1), pp. 53-62 (1979).
    6. G. V. Jones and J. F. Coogan, U. S. Patent 4,087,562 (May 2, 1978).
    7. R. G. K. Strobel and R. A. Eich, U. S. Patent 4,256,774 (Mar 17, 1981).
    8. J. M. Patel, A. B. Wolfson, and B. Lawrence, U. S. Patent 3,700,464 (Oct 24, 1972)
    9. R. S. Lin and I. I. Kessler, A multifactorial model for pancreatic cancer in man epidemiologic evidence, The Journal of the American Medical Association, 245 (2), pp. 147-152 (1981).
    10. E. L. Wynder, G. S. Dieck, and N. E. L. Hall, Case-control study of decaffeinated coffee consumption and pancreatic cancer, Cancer research, 46, pp. 5360-5363 (1986).
    11. A. G. Fischer and P. M. Kummer, U.S. Patent 5,208,056 (May 4, 1993).
    12. M. Spiro and R. M. Selwood, The kinetics and mechanism of caffeine infusion from coffee: The effect of particle size, Journal of the Science of Food and Agriculture, 35, pp. 915-924 (1984).
    13. K. Udayasankar, C. V. Raghavan, P. N. Srinivasa-Rao, K. Lakshiminarayana-Rao, S. Kuppuswamy, and P. K. Ramanathan, Studies on the extraction of caffeine from coffee beans, Journal of Food Science, 20, pp. 64-67 (1983).
    14. G. J. Hulbert, R. N. Biswal, C. B. Mehr, T. H. Walker, and J. L. Collins, Solid/liquid extraction of caffeine from guarana with methyl chloride, Food Science and Technology International, 4, pp. 53-58 (1998).
    15. J. D. Espinoza-Pérez, A. Vargas, V. J. Robles-Olvera, G. C. Rodrı´guez-Jimenes, M. A. Garcı´a-Alvarado, Mathematical modeling of caffeine kinetic during solid-liquid extraction of coffee beans, Journal of Food Engineering, 81, pp. 72-78 (2007).
    16. X. Wang, L. T. Lim, A kinetics and modeling study of coffee roasting under isothermal conditions, Food Bioprocess Technology, 7, pp. 621-632 (2014).
    17. D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, Journal of Applied Polymer Science, 13, pp. 1741-1747 (1969).
    18. H. Wang, G. Gu, and G. Giu, Evaluation of surface energy of polymers by contact angle goniometry, Journal of Central South University (Science and Technology), 37, pp. 942-946 (2006).
    19. F. M. Fowkes, Determination of interfacial tensions, contact angles, and dispersion forces in surface by assuming additivity of intermolecular interactions in surfaces, The Journal of Physical Chemistry, 66, pp. 382 (1962)
    20. C. W. Extrand and S. I. Moon, Contact angles on spherical surfaces, Langmuir, 24 (17), pp. 9470-9473 (2008).
    21. S. Lee, H. Y. Lee, I. F. Lee, and C. Y. Tseng, Ink diffusion in water, European Journal of Physics, 25, pp. 331-336 (2004).
    22. E. K. Kemsley, S. Ruault, and R. H. Wilson, Discrimination between Coffea Arabica and Coffea canephora variant robusta beans using infrared spectroscopy, Food Chemistry, 54, pp. 321-326 (1995).
    23. A. P. Craig, A. S. Franca, and L. S. Oliveria, Discrimination between immature and mature green coffees by attenuated total reflectance and diffuse reflectance fourier transform infrared spectroscopy, Journal of Food Science, 76, pp. C1162-C1168 (2011).
    24. R. M. Silverstein, F. X. Webster, D. J. Kiemle, and D. J. Bryce, Spectrometric identification of organic compounds, Wiley, Hoboken, New Jersey, USA, (2005).
    25. N. Reis, A. S. Franca, and L. S. Oliveria, Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics, Talanta, 115, pp. 563-568 (2013).
    26. M. M. Paradkar and J. Irudayaraj, Rapid determination of caffeine content in soft drinks using FTIR–ATR spectroscopy, Food Chemistry, 78, pp. 261-266 (2002).
    27. R. Karoui, G. Downey, and C. Blecker, Mid-Infrared Spectroscopy Coupled with Chemometrics: A Tool for the Analysis of Intact Food Systems and the Exploration of Their Molecular Structure−Quality Relationships − A Review, Chemical Reviews, 110 (10), pp. 6144-6168 (2010).
    28. D. J. Lyman, R. Benck, S. Dell, S. Merie, and J. M. Wijelath, FTIR-ATR analysis of brewed coffee: Effect of roasting conditions, Journal of Agricultural and Food Chemistry, 51 (11), pp. 3268-3272 (2003).
    29. J. Wang, S. Jun, H. C. Bittenbender, L. Gautz, and Q. X. Li, Fourier transform infrared spectroscopy for Kona coffee authentication, Journal of Food Science, 74, pp. C385-C391 (2009).
    30. M. N. Clifforda, J. Kirkpatricka, N. Kuhnertb, H. Roozendaala, P. R. Salgado, LC–MSn analysis of the cis isomers of chlorogenic acids, Food Chemistry, 106, pp. 379-385 (2008)
    31. J. S. Ribeiro, T. J. Salva, and M. M. C. Ferreira, Chemometric studies for quality control of processed Brazilian coffees using DRIFTS, Journal of Food Quality, 33, pp. 212-227 (2010).
    32. A. P. Echavarrı ´a, J. Paga ´n, and A. Ibarz, Melanoidins formed by Maillard reaction in food and their biological activity, Food Engineering Reviews, 4, pp. 203-223 (2012).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE