研究生: |
周冠圻 Chou, Kuan Chi |
---|---|
論文名稱: |
通道摻雜及低溫沉積介電層對多晶鍺無接面快閃記憶體元件特性研究 Channel Dopant and Low-Temperature Formed Dielectrics on Poly-Ge Junctionless Flash Memory Devices |
指導教授: |
張廖貴術
Chang-Liao, Kuei Shu |
口試委員: |
趙天生
Chao, Tien Sheng 謝嘉民 Shieh, Jia Min |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 多晶鍺 、無接面 、快閃記憶體 、通道摻雜 |
外文關鍵詞: | poly Ge, junctionless, flash memory, channel dopant |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在元件日漸微縮的趨勢下,平面式元件微縮空間有限,造成元件密度難增加且製程難度跟著大幅的提升,如何提升電性又能提高元件密度為目前重要的課題之一。有些解決方法已漸漸被提出,如高介電常數材料的應用、奈米線通道的結構、無接面快閃記憶體元件的應用和多晶矽、矽化鍺通道材料的應用等等。鍺相較於矽有比較高的電子遷移率,且多晶鍺元件可以使用低溫製程(<600˚C),可以降低製程熱預算。多晶鍺材料在未摻雜時為P型半導體,通道摻雜對多晶鍺快閃記憶體影響目前沒有相關研究。本篇論文使用多晶鍺無接面快閃記憶體,對於通道摻雜進行研究,並使用ICPCVD達到低溫製程。
在本論文中,第一個實驗是針對不同摻雜的多晶鍺通道無接面快閃記憶體做比較。有摻雜的多晶鍺元件在寫入抹除上都有較好的表現,在電荷保持力及寫抹耐久力也有較好的表現。而在有摻雜的多晶鍺元件中,N型通道的多晶鍺元件在各方面都有較好的表現,因為通道中主要載子為電子,寫入抹除電流較大,通道與介面態位較少。
第二個實驗是將低溫沉積氮化矽堆疊電荷捕捉層應用在N型通道多晶鍺快閃記憶體元件上,希望可以改善多晶鍺快閃記憶體的特性。二氧化鉿/氮化矽堆疊電荷捕捉層元件在寫抹速度有較好的表現,氮化矽較高的能障對電荷保持力也有改善,相較於單層氮化矽或是二氧化鉿/氧化鉿鋁電荷捕捉層也有較好的表現。
第三個實驗是使用二氧化鉿/氮化矽堆疊電荷捕捉層結構,比較在低溫製程下多晶鍺及多晶矽元件的特性差異。多晶矽元件在寫抹速度表現較好,因為穿隧氧化層較薄,且通道大小較小。N型摻雜通道多晶鍺元件在快閃記憶體表現較好,因為通道中主要載子為電子,寫入抹除電流較大,通道態位較少。在開關電流比及電晶體基本特性上P型摻雜通道多晶鍺元件表現較好,可能是因為P型多晶鍺的通道介面較好。
The scale down of planar flash device is limited by its capability of micro-miniature, which makes the process flow more complex. How to improve the electrical characteristics and increase the device density at the same time becomes two of the most important issues. Some approaches have been reported such as the implement of high-k materials, nanowire channel structure, junctionless channel, poly-Si channel and SiGe buried channel. The carrier mobility of Ge is higher than that of Si. poly-Ge devices can be fabricated at low temperature process (<600˚C), which can reduce process thermal budget. Poly-Ge film is naturally p type without any implantation. There is no report about the effect of channel dopant on poly-Ge. In this thesis, we implement poly-Ge on junctionless channel flash memory devices, and the characteristics of channel dopant are investigated. The low temperature process was achieved by ICPCVD.
In the first experiment, the characteristics of channel dopant on poly-Ge junctionless flash memory are investigated. The results show that doped poly-Ge devices perform better on program/erase speed, retention, and endurance. The poly-Ge device with N type dopant perform better because the main carriers of channel are electrons. The injection current of program/erase is higher and the interface states between channel and tunneling layer are fewer.
In the second experiment, to improve the characteristics of poly-Ge flash memory, low temperature formed Si3N4 is applied to N channel poly-Ge flash memory device. The HfO2/Si3N4 stacked charge trapping layer perform better on program/erase speed. Furthermore, the Si3N4 layer improve retention performance because of high energy barrier.
In the third experiment, the characteristics of poly-Ge and poly-Si devices with low temperature process by using HfO2/Si3N4 stacked charge trapping layer are investigated. The poly-Si device performs better on program/erase speed because of thinner tunneling oxide and smaller channel dimension. The N channel poly-Ge device performs better because the main carriers of channel are electrons. The injection current of program/erase is higher and the interfaces state between channel and tunneling layer are fewer. The P channel poly-Ge performs better on on/off ratio and transistor characteristics because of better channel interface of P channel poly-Ge device.
[1] K. San, C. Kaya, and T. Ma, “Effects of erase source bias on flash EPROM device reliability,” Electron Devices, IEEE Transactions on, vol. 42, no. 1, pp. 150 –159, Jan 1995.
[2] M. White, D. Adams, and J. Bu, “On the go with SONOS,” IEEE Circuits and Devices Magazine, vol. 16, no. 4, pp. 22 –31, Jul 2000.
[3] M. White, Y. Yang, A. Purwar, and M. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” in Nonvolatile Memory Technology Conference, 1996., Sixth Biennial IEEE International, pp. 52 –57, Jun 1996.
[4] J. Bu and M. White, “Retention reliability enhanced SONOS NVSM with scaled programming voltage,” in Aerospace Conference Proceedings, 2002. IEEE, vol. 5, pp. 5–2383 – 5–2390, 2002.
[5] K. Kahng and S. Sze, “A floating gate and its application to memory devices,” Electron Devices, IEEE Transactions on, vol. 14, no. 9, pp. 629, Sep 1967.
[6] A. Wang and W. D. Woo, “Static magnetic storage and delay line,” Journal of Applied Physics, vol. 21, no. 1, pp. 49 –54, Jan 1950.
[7] S. M. Sze and K. K. Ng, physics of semiconductor Devices, 3rd Ed., Wiley Interscience, Hoboken, N.J. 2007.
[8] T. Y. Tseng and S. M. Sze, Eds, nonvolatile Memories Materials, Devices, and Applications, American Scientific Publishers, Stevenson Ranch, CA, 2012.
[9] White M. H., Adams D. A., and Bu J., “On the go with SONOS” IEEE Circuits Devices Mag., Vol. 16, No. 4, pp. 22-31, 2000.
[10] N. Yamauchi, J. J. Hajjar and R. Reif, “Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film,” IEEE Trans. Electron Devices, vol. 38, pp. 55-60, 1991.
[11] Y. Kamimuta, K. Ikeda, K. Furuse, T. Irisawa and T. Tezuka, ” Short Channel Poly-Ge Junction-less p-type FinFETs for BEOL Transistors,” VLSI Technology, Systems, and Applications (VLSI-TSA), 2013 International Symposium on, pp.109, 2013.
[12] Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa and T. Tezuka, “Superior cut-off characteristics of Lg=40nm Wfin=7nm poly ge junctionless tri-gate FET for stacked 3D circuits integration,” in VLSI Symp. Tech. Dig., pp. 94-95, 2013.
[13] K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka,” High-Performance Tri-Gate Poly-Ge Junction-Less P- and N-MOSFETs Fabricated by Flash Lamp Annealing Process,” in IEEE IEDM, pp. 16.6.1 - 16.6.4, 2014.
[14] T. H. Hsu, H. T. Lue, E. K. Lai, J. Y. Hsieh, S. Y. Wang, Y. L. Wu, Y. C. King, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, “A high-speed BE-SONOS NAND flash utilizing the field-enhancement effect of FinFET,” in IEDM Tech. Dig., pp. 913-916, 2007.
[15] M. Heyns, S. Beckx, H. Bender, P. Blomme, W. Boullart, B. Brijs, et al., “Scaling of high-k dielectrics towards sub-1nm EOT,” in VLSI Technology, Systems, and Applications, 2003 International Symposium on, pp. 247-250, 2003.
[16] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros and M. Metz, “High-k metal-gate stack and its MOSFET characteristics,” IEEE Electron Device Lett., vol. 25, pp. 408-410, 2004.
[17] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu and C. Lu, “MA BE-SONOS: A bandgap engineered SONOS using metal gate and Al2O3 blocking layer to overcome erase saturation,” in Non-Volatile Semiconductor Memory Workshop, pp. 88-89, 2007.
[18] T. Yan-Ny, W. K. Chim, B. Jin Cho, and C. Wee-Kiong, “Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer,” Electron Devices, IEEE Transactions on, vol. 51, pp. 1143-1147, 2004.
[19] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. Chen, J. Ku, K. Y. Hsieh, R. Liu and C. Y. Lu, “BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability,” in IEDM Tech. Dig., pp. 547-550, 2005.
[20] Z. H. Ye, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin and M. J. Tsai, “A novel SONOS-type flash device with stacked charge trapping layer,” Microelectron. Eng., vol. 86, pp. 1863-1865, 2009.
[21] P.-H. Tsai, K.-S. Chang-Liao, T.-C. Liu, T.-K. Wang, P.-J. Tzeng, C.-H. Lin, L. S. Lee, and M.-J. Tsai, “Charge-trapping-type flash memory device with stacked high-k charge-trapping layer,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 775–777, Jul. 2009.
[22] P. H. Tsai, K. S. Chang-Liao, C. Y. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin, L. S. Lee, and M.-J. Tsai, “Novel SONOS-type nonvolatile memory device with optimal Al doping in HfAlO charge-trapping layer,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 265–268, Mar. 2008.
[23] J. P. Colinge, I. Ferain, A. Kranti, C. W. Lee, N. D. Akhavan, P. Razavi, R. Yan and R. Yu, ”Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions,” Sci. Adv. Mater.,vol. 3, pp. 477-482, 2011.
[24] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy and R. Murphy, “Nanowire transistors without junctions,” Nat. Nanotechnol.,vol. 5, pp. 225-229, 2010.
[25] C. J. Su, T. K. Su, T. I. Tsai, H. C. Lin and T. Y. Huang, “A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires,” Nanoscale Res. Lett., vol. 7, pp. 1-6, 2012.
[26] H. T. Lue, Y. H. Hsiao, P. Y. Du, S. C. Lai, T. H. Hsu, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, C. P. Lu, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, “A novel buried-channel FinFET BE-SONOS NAND flash with improved memory window and cycling endurance,” in VLSI Symp. Tech. Dig., pp. 224-225, 2009.
[27] Dieter K. Schrodor, “Semiconductor Material and Device Chracterization ”, third edition, 2006.
[28] E. P. Raynes, et al., “Method for the measurement of the K22 nematic elastic constant,” App. Phys. Lett., Vol. 82, p. 13-15, 2003.
[29] S. Saito, et al., “First-principles study to obtain evidence of low interface defect density at Ge/GeO2 interfaces,” App. Phys. Lett., Vol. 95, p. 011908, 2009.
[30] C. W. Chen, J. Y. Tzeng, C. T. Chung, H. P. Chien, C. H. Chien and G. L. Luo, “High-performance germanium p- and n-MOSFETs with NiGe source/drain,” IEEE Trans. Electron Devices, vol. 61, pp. 2656-2661, Aug. 2014.
[31] Q. C. Zhang, J. D. Huang, N. Wu, G. X. Chen, M. H. Hong, L. K. Bera and C. X. Zhu, “Drive-current enhancement in Ge n-channel MOSFET using laser annealing for source/drain activation,” IEEE Electron Device Lett., vol. 27, pp. 728-730, Sep. 2006.
[32] R. Duffy and M. Shayesteh, ”Germanium doping, contacts, and thin-body structures,” Graphene, Ge/Iii-V, Nanowires, and Emerging Materials for Post-Cmos Applications 4, vol. 45, pp. 189-201, May 2012.
[33] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ, USA: Wiley, 2007.
[34] E. Simoen, A. Satta, A. D'Amore, T. Janssens, T. Clarysse, K. Martens, B. De Jaeger, A. Benedetti, I. Hoflijk, B. Brijs, M. Meuris and W. Vandervorst, “Ion-implantation issues in the formation of shallow junctions in germanium,” Mater. Sci. Semicond. Process, vol. 9, pp. 634-639, Aug. 2006.
[35] J. D. Huang, N. Wu, Q. C. Zhang, C. X. Zhu, A. A. O. Tay, G. X. Chen and M. H. Hong, “Germanium n+/p junction formation by laser thermal process,” Appl. Phys. Lett., vol. 87, pp. 173507-1-173507-3, Oct. 2005.
[36] Liu, T.-Y.; Lo, S.-C.; Sheu, J.-T., “Gate-All-Around Single-Crystal-Like Poly-Si Nanowire TFTs With a Steep-Subthreshold Slope,” Electron Device Letters, IEEE , vol.34, no.4, pp.523,525, April 2013.
[37] S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot- electron injection in MOSFET’s,” Electron Devices, IEEE Transactions on, vol. 31, no. 9, pp. 1116 – 1125, Sep 1984.
[38] M. H. White, Y. Yang, P. Ansha, and M. L. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, vol. 20, pp. 190-195, 1997.
[39] W. Tsai, N. Zous, C. Liu, C. Liu, C. Chen, T. Wang, S. Pan, C.-Y. Lu, and S. Gu, “Data retention behavior of a SONOS type two-bit storage flash memory cell,” in Electron Devices Meeting, 2001. IEDM ’01. Technical Digest. International, pp. 32.6.1 –32.6.4, 2001.
[40] K. San, C. Kaya, and T. Ma, “Effects of erase source bias on flash EPROM device reliability,” Electron Devices, IEEE Transactions on, vol. 42, no. 1, pp. 150 –159, Jan 1995.
[41] Kuzum D., Pethe A. J., Krishnamohan Tejas, Oshima Yasuhiro, Sun Yun, McVittie Jim P., Pianetta Piero A., McIntyre Paul C., K.C. Saraswat, “Interface-Engineered Ge (100) and (111), N- and P-FETs with High Mobility,” Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp.723-726, 10-12 Dec. 2007.
[42] Huet K., Toque-Tresonne I., Mazzamuto F., Emeraud T., Besaucele H., “Laser Thermal Annealing: A low thermal budget solution for advanced structures and new materials,” Junction Technology (IWJT), 2014 International Workshop on, pp.1-6, 18-20 May 2014.
[43] Li-Jung Liu, Kuei-Shu Chang-Liao, Yi-Chuen Jian, Jen-Wei Cheng, and Tien-Ko Wang “Improvement on programming and erasing speeds for charge-trapping flash memory device with SiGe buried channel,” IEEE Electron Device Lett., vol. 33, no. 9 pp. 1264-1266, Sept. 2012
[44] L. M. Weltzer, and S. K. Banerjee, “Enhanced CHISEL Programming in Flash Memory Devices With SiGe Buried Layer,” Proc. Non-Volatile Memory Technol. Symp., pp. 31-33, 2004.
[45] Xin Wang, Ouyang Q., Mudanai S., Tasch A. Jr., Banerjee S.K., ”Enhanced Secondary electron injection in novel SiGe flash memory device,” IEDM Tech Dig., pp. 105-108, 2000.
[46] T. Naito, T. Ishida, T. Onoduka1, M. Nishigoori, T. Nakayama, Y. Ueno, Y. Ishimoto, A. Suzuki, W. Chung, R. Madurawe , S. Wu , S. Ikeda, and H. Oyamatsu, “World’s first monolithic 3D-FPGA with TFT SRAM over 90nm 9 layer Cu CMOS,” in VLSI Technology (VLSIT), 2010 Symposium on, pp. 219-220, 2010.
[47] Sung Dae Suk, Ming Li, Yun Young Yeoh, Kyoung Hwan Yeo, Jae Kyu Ha, Hyunseok Lim, HyunWoo Park, Dong-Won Kim, TaeYoung Chung, Kyung Seok Oh and Won-Seong Lee, “Characteristics of sub 5nm Tri-Gate Nanowire MOSFETs with Single and Poly Si Channels in SOI Structure,” in VLSI Technology, 2009 Symposium on, pp. 142-143, 2009.