簡易檢索 / 詳目顯示

研究生: 游雅雯
Ya-Wen Yu
論文名稱: 八羥奎林鎵鹽奈米結構製備及其性質研究
Preparation and characterization of Gaq3 nanostructures
指導教授: 彭宗平
Tsong-Pyng Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 78
中文關鍵詞: 八羥奎林鎵鹽奈米線奈米球氣相冷凝法
外文關鍵詞: Gaq3, nanowire, nanoparticle, vapor condensation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用氣相冷凝法在鈍氣下製備八羥奎林鎵鹽(Gaq3)之奈米線及奈米球。Gaq3 奈米結構的形貌主要可由工作溫度來控制,再藉由不同工作壓力作調整。在高工作溫度下可以長出奈米球;而在低工作溫度下則可長出奈米線。所製備的奈米線之直徑大約分布在40 到80 nm 之間;而奈米球的直徑小至80 nm,大則超過1 μm。在較高的工作壓力下,可以得到較大的奈米球。關於奈米線和奈米球的成長機制,本論文引用氣-固成長機制來作解釋。為了進一步了解所製備的奈米結構的結晶性及其熱性質與發光性質,本實驗亦使用了XRD、
    FTIR、NMR、DSC 和PL 等儀器進行分析,結果顯示所製備的Gaq3奈米結構均為δ 結晶相,而製備前的起始粉末則具β 結晶相。由於δ結晶相是由Gaq3 分子的順式異構物所組成,而β 結晶相則是由其反式異構物所組成,晶相的不同可以用來解釋Gaq3 奈米結構之光激發光譜(~511 nm)相較於其原始粉末(~ 519 nm)呈現藍移的現象。除此之外,因為Gaq3 和Alq3 同屬於Mq3 系列的化合物,本研究亦比較兩者所形成的奈米結構,以期全面了解Mq3 系列化合物各種性質之趨勢。


    Gaq3 nanowires and nanoparticles were fabricated by vapor condensation in inert gases. The morphology of the Gaq3 nanostructures is mainly controlled by the working temperature, and modulated by the working pressure. Higher working temperature leads to formation of nanoparticles, while lower temperature leads to formation of nanowires. The diameter of the nanowires ranges from 40 to 80 nm, while that of the nanoparticles ranges from 80 nm to over 1 μm. Larger nanoparticles can be obtained when the working pressure increases. A vapor-solid growth mechanism was adopted to explain the formation of the Gaq3 nanowires and nanoparticles. To further understand the crystallinities and thermal and optical properties of Gaq3 nanostructures, XRD, FTIR, NMR, DSC, and PL analysis were made. The Gaq3 nanostructures were identified to be δ-phase which consists of fac-Gaq3, while the raw material was β-phase which consists of mer-Gaq3. The result can be used to explain the blue shift in PL spectrum of the Gaq3 nanostructures (~511 nm) with respect to that of the raw material (~ 519 nm). Since both Gaq3 and Alq3 belong to Mq3 compounds, a comparison of the properties between Gaq3 and Alq3 nanostructures is made to illustrate the trend of the Mq3 series.

    中文摘要 i Abstract ii 誌謝 iii Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Basic properties of Gaq3 3 2.1.1 The molecular structure of Gaq3 3 2.1.2 The polymorphs of Gaq3 4 2.1.3 Thermal properties of Gaq3 7 2.1.4 Optical properties of Gaq3 7 2.2 Metal quinolates series 18 2.3 Alq3 nanostructures prepared by vapor condensation method 25 Chapter 3 Experimental Procedures 28 3.1 Vapor condensation system 28 3.1.1 Process chamber 28 3.1.2 Pumping system 30 3.1.3 Heating system 30 3.1.4 Gauge system 30 3.2 Vapor condensation method 31 3.3 Analysis of Gaq3 nanostructures 32 3.3.1 Field emission scanning electron microscopy (FESEM) 32 3.3.2 X-ray diffraction (XRD) 32 3.3.3 Differential scanning calorimetry (DSC) 32 3.3.4 Fourier-transform infrared spectrometry (FTIR) 34 3.3.5 13C Nuclear magnetic resonance (13C NMR) 34 3.3.6 Photoluminescence (PL) 34 Chapter 4 Results and Discussion 35 4.1 Morphology and sized control of Gaq3 nanostructures 35 4.1.1 Effect of working temperature 35 4.1.2 Effect of working gas 49 4.1.3 Effect of working pressure 49 4.1.4 Summary of the growth mechanism 52 4.2 Crystallinity of Gaq3 nanostructures 53 4.3 Thermal properties of Gaq3 nanostructures 58 4.4 Optical properties of Gaq3 nanostructures 62 4.5 Comparison between Gaq3 and Alq3 65 Chapter 5 Conclusions 72 References 74

    (1) Alivisatos, A. P.; Barbara, P. F.; Castleman, A. W.; Chang, J.; Dixon, D. A.; Klein, M. L.; McLendon, G. L.; Miller, J. S.; Ratner, M. A.; Rossky, P. J.; Stupp, S. I.; Thompson, M. E. Adv. Mater. 1999, 10, 1297-1336.
    (2) Thiaville, A.; Miltat, J. Science 1999, 284, 1939-1940.
    (3) Ozin, G. A. Adv. Mater. 1992, 4, 612-649.
    (4) Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353-389.
    (5) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425-2427.
    (6) Iijima, S. Nature 1991, 351, 56-58.
    (7) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947-1949.
    (8) Cao, Y.; Parker, I. D.; Yu, G.; Zhang, C.; Heeger, A. J. Nature 1999, 397, 414-417.
    (9) Noy, A.; Miller, A. E.; Klare, J. E.; Weeks, B. L.; Woods, B. W.; DeYoreo, J. J. Nano Letters 2002, 2, 109-112.
    (10) Lim, J. H.; Mirkin, C. A. Adv. Mater. 2002, 14, 1474-1477.
    (11) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915.
    (12) Sapochak, L. S.; Padmaperuma, A.; Washton, N.; Endrino, F.; Schmett, G. T.; Marshall, J.; Fogarty, D.; Burrows, P. E.; Forrest, S. R. J. Am. Chem. Soc. 2001, 123, 6300-6307.
    (13) Ghedini, M.; Deda, M. L.; Aiello, I.; Grisolia, A. Synth. Met. 2003, 138, 189-192.
    (14) Chen, C. H.; Shi, S. Coord. Chem. Rev. 1998, 171, 161-174.
    (15) Burrows, P. E.; Shen, Z.; Bulovic, V.; McCarty, D. M.; Forrest, S. R. J. Appl. Phys. 1996, 79, 7991-8006.
    (16) Burrows, P. E.; Sapochak, L. S.; McCarty, D. M.; Forrest, S. R.; Thompson, M. E. Appl. Phys. Lett. 1994, 64, 2718-2720.
    (17) Sapochak, L. S.; Burrows, P. E.; Garbuzov, D.; Ho, D. M.; Forrest, S. R.; Thompson, M. E. J. Phys. Chem. 1996, 100, 17766-17771.
    (18) Elschner, A.; Heuer, H. W.; Jonas, F.; Kirchmeyer, S.; Wehrmann, R.; Wussow, K. Adv. Mater. 2001, 13, 1811-1815.
    (19) Gahungu, G.; Zhang, J. J. Mol. Struct. (Theochem) 2005, 755, 19-30.
    (20) Wang, Y.; Zhang, W.; Li, Y.; Ye, L.; Yang, G. Chem. Mater. 1999, 11, 530-532.
    (21) Curioni, A.; Boero, M.; Andreoni, W. Chem. Phys. Lett. 1998, 294, 263-271.
    (22) Brinkmann, M.; Fite, B.; Pratontep, S.; Chaumont, C. Chem. Mater. 2004, 16, 4627-4633.
    (23)Brinkmann, M.; Gadret, G.; Muccini, M.; Taliani, C.; Masciocchi, N.; Sironi, A. J. Am. Chem. Soc. 2000, 122, 5147-5157.
    (24) C□lle, M.; Dinnebier, R. E.; Br□tting, W. Chem. Commun. 2002, 2908-2909.
    (25) Rajeswaran, M.; Blanton, T. N. J. Chem. Crystallogr. 2005, 35, 71-76.
    (26) Muccini, M.; Loi, M. A.; Kenevey, K.; Zamboni, R.; Masciocchi, N.; Sironi, A. Adv. Mater. 2004, 16, 861-864.
    (27) Rajeswaran, M.; Jarikov, V. V. Acta. Cryst. 2004, E60, m217-m218.
    (28) C□lle, M.; Br□tting, W. Phys. Stat. Sol. (a) 2004, 201, 1095-1115.
    (29) C□lle, M.; Gmeiner, J.; Milius, W.; Hillebrecht, H.; Br□tting, W. Adv. Funct. Mater. 2003, 13, 108-112.
    (30) Zhang, J.; Frenking, G. Chem. Phys. Lett. 2004, 394, 120-125.
    (31) Amati, M.; Lelj, F. Chem. Phys. Lett. 2002, 358, 144-150.
    (32) Amati, A.; Lelj, F. J. Phys. Chem. A 2003, 107, 2560-2569.
    (33) Kaji, H.; Kusaka, Y.; Onoyama, G.; Horii, F. J. Am. Chem. Soc. 2006, 128, 4292-4297.
    (34) C□lle, M.; Forero-Lenger, S.; Gmeiner, J.; Br□tting, W. Phys. Chem. Chem. Phys. 2003, 5, 2958-2963.
    (35) Kushto, G. P.; Iizumi, Y.; Kido, J.; Kafafi, Z. H. J. Phys. Chem. 2000, A 104, 3670-3680.
    (36) Esposti, A. D.; Brinkmann, M.; Ruani, G. J. Chem. Phys. 2002, 116, 798-813.
    (37) Nicolau, D. V.; Yoshikawa, S. J. Mol. Graphics Modell. 1998, 16, 83-96.
    (38) Sapochak, L. S.; Falkowitz, A.; Ferris, K. F.; Steinberg, S.; Burrows, P. E. J. Phys. Chem. 2004, B 108, 8855-8566.
    (39) Sapochak, L. S.; Ranasinghe, A.; Kohlmann, H.; Ferris, K. F.; Burrows, P. E. Chem. Mater. 2004, 16, 401-406.
    (40) Hamada, Y.; Sano, T.; Fujita, M.; Fujii, T.; Nishio, Y.; Shibata, K. Jpn. J. Appl. Phys. 1993, 32, L514-L515.
    (41) Chen, B. J.; Sun, X. W.; Li, Y. K. Appl. Phys. Lett. 2003, 82, 3017-3019.
    (42) Wang, L.; Jiang, X.; Zhang, Z.; Xu, S. Displays 2000, 21, 47-49.
    (43) Sapochak, L. S.; Benincasa, F. E.; Schofield, R. S.; Baker, J. L.; Riccio, K. K. C.; Fogarty, D.; Kohlmann, H.; Ferris, K. F.; Burrows, P. E. J. Am. Chem. Soc. 2002, 124, 6119-6125.
    (44) Chiu, J. J.; Wang, W. S.; Kei, C. C.; Cho, C. P.; Perng, T. P.; Wei, P. K.; Chiu, S. Y. Appl. Phys. Lett. 2003, 83, 4607-4609.
    (45) Chiu, J. J.; Kei, C. C.; Perng, T. P.; .Wang, W. S. Adv. Mater. 2003, 15, 1361-1364.
    (46) Cho, C. P.; Perng, T. P. Nanotech. 2006, 17, 3756-3760.
    (47) Chiu, J. J.; Wang, W. S.; Kei, C. C.; Perng, T. P. Appl. Phys. Lett. 2003, 83, 347-349.
    (48) Cho, C. P.; Perng, T. P. Nanotech. 2007, 18, 125202.
    (49) Tian, X.; Fei, J.; Pi, Z.; Yang, C.; Luo, D.; Pei, F.; Zhang, L. Sol. Stat. Commun. 2006, 138, 530-533.
    (50) Zhao, Y. S.; Di, C.; Yang, W.; Yu, G.; Liu, Y.; Yao, J. Adv. Funct. Mater. 2006, 16, 1985-1991.
    (51) Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Adv. Funct. Mater. 2003, 13, 9-24.
    (52) Braun, M.; Gmeiner, J.; Tzolov, M.; Coelle, M.; Meyer, F. D.; Milius, W.; Hillebrecht, H.; Wendland, O.; Sch□tz, J. U. v.; Br□tting, W. J. Chem. Phys. 2001, 114, 9625-9632.
    (53) Orihashi, Y.; Kobayashi, N.; Tsuchida, E.; Matsuta, H.; Nakanishi, H.; Kato, M. Chem. Lett. 1985, 11, 1617-1620
    (54) Nevin, W. A.; Hempstead, M. R.; Liu, W.; Leznoff, C. C.; Lever, A. B. P. Inorg. Chem. 1987, 26, 570-577.
    (55) Utz, M.; Chen, C.; Morton, M.; Papadimitrakopoulos, F. J. Am. Chem. Soc. 2003, 125, 1371-1375.
    (56) Cheung, C. H.; Djurisic, A. B.; Leung, Y. H.; Wei, Z. F.; Xu, S. J.; Chan, W. K. Chem. Phys. Lett. 2004, 394, 203-206.
    (57) Alivisatos, A. P. Science 1996, 271, 933-937.
    (58) Cho, C. P.; Wu, C. A.; Perng, T. P. Adv. Funct. Mater. 2006, 16, 819-823.
    (59) Wu, C. A., National Tsing Hua University, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE