研究生: |
劉學謙 Liu, Xue-Qian |
---|---|
論文名稱: |
奈米薄膜共軛高分子光牽引擴散運動和激發能態研究 Light-directing diffusion and excitation states of conjugated polymers in thin solid films |
指導教授: |
楊長謀
Yang, Arnold C.M. |
口試委員: |
鄭智嘉
Cheng, Chih-Chia 謝永堂 Shie, Yung-Tang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 共軛高分子 、擴散 、能態 、奈米薄膜 、溶劑退火 |
外文關鍵詞: | conjugated polymer, diffusion, excitation state, nano thin film, solvent vapor annealing |
相關次數: | 點閱:31 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用光激發共軛高分子P3HT,驅使高分子固態薄膜運動,形成奈米尺度下三維的圖案。我們利用微型光罩將共軛高分子選擇特定區域曝光,使共軛高分子因激發而導致其整體亂度下降,再透過溶劑蒸氣退火,使高分子鏈有足夠的運動能力在曝光及未曝光區域間進行長距離的擴散運動。本實驗選擇40nm、80nm兩種不同厚度的薄膜並且控制曝光強度發現P3HT超薄膜的擴散行為共分兩個不同的階段:第一階段的分子鏈擴散是由於 旋塗製造而在薄膜表層有殘留的應力,因此表層約5至10nm厚的分子鏈有較大移動能力,此階段擴散和薄膜厚度關係較小;而隨著時間的推進,下層分子鏈和基板間的adhesion effect不再拘束分子鏈的移動,而開始了第二階段擴散,由於在此階段分子鏈的擴散為整體薄膜,在相同照光強度下擴散的通量和薄膜厚度呈正相關,可形成高度約30nm的特殊圖形,且此階段發生的時間點和薄膜厚度及照光強度有關。透過fick’s law所計算出來的化學能變化,再換算成被激發π電子數目,對應到利用高分子吸收所換算成的光子數目,發現透過光激發改變分子鏈結構會造成lifetime的延長。而透過此光誘導方式,使我們可以精確地控制分子表面形成特殊圖案,對於光電子元件的製造具有廣闊的前景。
We study light-directed molecular movements of conjugated polymers in solvent-vapor-annealed solid films. In this study, a photomask is used to selectively expose with controlled intensities small areas of the P3HTrra films of a fixed thickness (40nm, 80nm) where the polymer molecules in the lighted regions can travel long distances to the un-exposed regions driven by the light-induced chemical potential increase. We found that the polymer diffusion is divided into two regimes: first by the molecules in the surface layer and later by that in the bulk underneath. The chains in the layer about 5 to 10 nm below the free surface have higher chemical potentials and thus are activated early during the light exposure to result in the molecular flux that essentially shows no correlation with the film thickness. Then as the time increases to liberate polymer chains from the constraints of substrate adhesion, the molecular flux in the 2nd stage emerges, exhibiting a clear positive dependence of the flux on the film thickness. The diffusion can accurately create topographical patterns with a height up to about 30 nm. The timing of the 2nd stage molecular flow commencement is linked to the film thickness and the light intensity. Calculating the chemical energy change via Fick’s law and converting it to excited π-electrons reveals that light-induced changes in the molecular chain structure extend the lifetime. This light-induced method enables precise control over the molecular distribution in polymer nanofilms, resulting in the formation of accurate topographical patterns, holding great promise for the fabrication of organic optoelectronic devices.
(1) D. Braun; A. J. Heeger. Visible light emission from semiconducting polymer diodes. Applied Physics Letters 1991, 58 (18), 1982-1984.
(2) G. Gustafsson; Y. Cao; G. Treacy; F. Klavetter; N. Colaneri; A. Heeger. Flexible light-emitting diodes made from soluble conducting polymers. Nature 1992, 357 (6378), 477-479.
(3) G. He; Y. Li; J. Liu; Y. Yang. Enhanced electroluminescence using polystyrene as a matrix. Applied physics letters 2002, 80 (22), 4247-4249.
(4) G. Reiter; M. Hamieh; P. Damman; S. Sclavons; S. Gabriele; T. Vilmin; E. Raphaël. Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nature materials 2005, 4 (10), 754-758.
(5) M. Yang; S. Hou; Y. Chang; A.-M. Yang. Molecular recoiling in polymer thin film dewetting. Physical review letters 2006, 96 (6), 066105.
(6) G. Reiter. Dewetting of thin polymer films. Physical review letters 1992, 68 (1), 75.
(7) G. Reiter. Unstable thin polymer films: rupture and dewetting processes. Langmuir 1993, 9 (5), 1344-1351.
(8) S. H. Lee; P. J. Yoo; S. J. Kwon; H. H. Lee. Solvent-driven dewetting and rim instability. The Journal of chemical physics 2004, 121 (9), 4346-4351.
(9) L. Xu; T. Shi; L. An. The dewetting dynamics of the polymer thin film by solvent annealing. The Journal of chemical physics 2008, 129 (4).
(10) 陳威群, 清華大學材料系碩士論文, 利用光罩方法調控共軛高分子之電子/聲子交互作用及其長距離側向擴散以生成精密圖樣, 2015.
(11) 潘志華, 清華大學材料系碩士論文, 光激發共軛高分子構形引起熵的改變以及在分子擴散的控制, 2016.
(12) 盧宣慈, 清華大學材料系碩士論文, 利用光罩方法控制共軛高分子P3HT的擴散運動, 2017.
(13) 楊硯普, 清華大學材料系碩士論文, 光牽引共軛高分子P3HT 探討亂度變化、毛細力作用以及光裂解對光罩控制高分子擴散之影響, 2020.
(14) D. E. Bornside; C. W. Macosko; L. Scriven. MODELING OF SPIN COATING. Journal of imaging technology 1987, 13 (4), 122-130.
(15) T. Yamamoto; T.-a. Koizumi. Synthesis of π-conjugated polymers bearing electronic and optical functionalities by organometallic polycondensations and their chemical properties. Polymer 2007, 48 (19), 5449-5472.
(16) K. Tremel; S. Ludwigs. Morphology of P3HT in thin films in relation to optical and electrical properties. P3HT revisited–from molecular scale to solar cell devices 2014, 39-82.
(17) B. J. Schwartz. What makes a chromophore? Nature Materials 2008, 7 (6), 427-428.
(18) 楊志偉, 清華大學材料系碩士論文, 利用除潤與薄膜拉伸測試研究分子鏈運動對共軛高分子發光之影響, 2006.
(19) 陳炳志, 清華大學材料系碩士論文, 表面除潤摩擦形變引起之共軛高分子巨大之光電增益, 2010.
(20) I. Botiz; P. Freyberg; N. Stingelin; A. C.-M. Yang; G. n. Reiter. Reversibly slowing dewetting of conjugated polymers by light. Macromolecules 2013, 46 (6), 2352-2356.
(21) P. J. Flory. Thermodynamics of high polymer solutions. The Journal of chemical physics 1942, 10 (1), 51-61.
(22) M. L. Huggins. Solutions of long chain compounds. The Journal of chemical physics 1941, 9 (5), 440-440.
(23) R. F. Blanks; J. Prausnitz. Thermodynamics of polymer solubility in polar and nonpolar systems. Industrial & Engineering Chemistry Fundamentals 1964, 3 (1), 1-8.
(24) J. A. Emerson; D. T. Toolan; J. R. Howse; E. M. Furst; T. H. Epps III. Determination of solvent–polymer and polymer–polymer Flory–Huggins interaction parameters for poly (3-hexylthiophene) via solvent vapor swelling. Macromolecules 2013, 46 (16), 6533-6540.
(25) J. Nistane; L. Chen; Y. Lee; R. Lively; R. Ramprasad. Estimation of the Flory-Huggins interaction parameter of polymer-solvent mixtures using machine learning. MRS Communications 2022, 12 (6), 1096-1102.
(26) J. T. Houghton. The physics of atmospheres; Cambridge University Press, 2002.
(27) L. Wang; E. Puodziukynaite; E. M. Grumstrup; A. C. Brown; S. Keinan; K. S. Schanze; J. R. Reynolds; J. M. Papanikolas. Ultrafast formation of a long-lived charge-separated state in a Ru-loaded poly (3-hexylthiophene) light-harvesting polymer. The Journal of Physical Chemistry Letters 2013, 4 (14), 2269-2273.
(28) S. Tretiak; A. Saxena; R. Martin; A. Bishop. Conformational dynamics of photoexcited conjugated molecules. Physical review letters 2002, 89 (9), 097402.
(29) N. P. Wells; B. W. Boudouris; M. A. Hillmyer; D. A. Blank. Intramolecular exciton relaxation and migration dynamics in poly (3-hexylthiophene). The Journal of Physical Chemistry C 2007, 111 (42), 15404-15414.
(30) M. Larkowska; M. Wuebbenhorst; S. Kucharski. Spirooxazine photoisomerization and relaxation in polymer matrices. International Journal of Polymer Science 2011, 2011 (1), 627195.
(31) 汪建民. 材料分析; 中國材料科學學會, 1998.
(32) A. Rivaton; A. Tournebize; J. Gaume; P. O. Bussière; J. L. Gardette; S. Therias. Photostability of organic materials used in polymer solar cells. Polymer international 2014, 63 (8), 1335-1345.
(33) M. Manceau; A. Rivaton; J.-L. Gardette; S. Guillerez; N. Lemaître. The mechanism of photo-and thermooxidation of poly (3-hexylthiophene)(P3HT) reconsidered. Polymer Degradation and Stability 2009, 94 (6), 898-907.
(34) M. Manceau; A. Rivaton; J. L. Gardette. Involvement of singlet oxygen in the solid‐state photochemistry of P3HT. Macromolecular Rapid Communications 2008, 29 (22), 1823-1827.
(35) H. Hintz; H.-J. Egelhaaf; L. Lüer; J. Hauch; H. Peisert; T. Chassé. Photodegradation of P3HT− a systematic study of environmental factors. Chemistry of Materials 2011, 23 (2), 145-154.
(36) J. Forrest; K. Dalnoki-Veress; J. Stevens; J. Dutcher. Effect of free surfaces on the glass transition temperature of thin polymer films. Physical review letters 1996, 77 (10), 2002.
(37) H. Lin; I. Tsai; A.-M. Yang; M. Hsu; Y. Ling. Chain Diffusion and Microstructure at a Glassy− Rubbery Polymer Interface by SIMS. Macromolecules 2003, 36 (7), 2464-2474.
(38) I. Karapanagiotis; W. W. Gerberich. Curvature driven flow of thin polymer films and diffusivity measurements. Macromolecules 2005, 38 (8), 3420-3425.
(39) G. Grover; G. M. Peters; J. D. Tovar; M. Kertesz. Quinonoid vs. aromatic structures of heteroconjugated polymers from oligomer calculations. Physical Chemistry Chemical Physics 2020, 22 (20), 11431-11439.
(40) Z. Vardeny; E. Ehrenfreund; O. Brafman; M. Nowak; H. Schaffer; A. Heeger; F. Wudl. Photogeneration of confined soliton pairs (bipolarons) in polythiophene. Physical review letters 1986, 56 (6), 671.
(41) S. Cook; A. Furube; R. Katoh. Analysis of the excited states of regioregular polythiophene P3HT. Energy & Environmental Science 2008, 1 (2), 294-299.
(42) T. Drori; E. Gershman; C. Sheng; Y. Eichen; Z. V. Vardeny; E. Ehrenfreund. Illumination-induced metastable polaron-supporting state in poly (p-phenylene vinylene) films. Physical Review B—Condensed Matter and Materials Physics 2007, 76 (3), 033203.
(43) 工業材料雜誌228期