研究生: |
黃駿惟 Huang, Chun-Wei |
---|---|
論文名稱: |
飛秒雷射誘導表面週期性結構於STAVAX與其鍍鎳表面之研究 The Study on Femtosecond Laser Induced Periodic Surface Structures (FLIPSS) on STAVAX and Ni-coated STAVAX |
指導教授: |
蔡宏營
Hung-Yin |
口試委員: |
楊尚達
Yang, Shang-Da 徐偉軒 Hsu, Wei-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 飛秒雷射誘導表面週期結構 、金屬微結構模具 、飛秒雷射表面處理 、熱壓印 、射出成形轉印 |
外文關鍵詞: | Femtosecond laser-induced periodic surface structure, Metal sub-microstructure template, Femtosecond laser surface modification, Hot-embossing, Injection molding |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討飛秒雷射誘導表面週期性結構(Femtosecond Laser Induced Periodic Surface Structure,簡稱FLIPSS)之特性,分別針對STAVAX模具與其鍍鎳模具表面,透過調整適當的雷射功率(雷射能量密度)、脈衝重複率以及掃描速度,製作出具有不同形貌與週期的微奈米結構,後續結合射出成型轉印與熱壓印技術,分別對厚度為2 mm的聚甲基丙烯酸甲酯(PMMA)與環烯烴共聚物(COC)板材進行結構轉印,並量測其反射率與穿透率,探討FLIPSS的光學性質(穿透率與反射率)。此外,本研究亦推導出FLIPSS現象簡化的數學模型,藉此了解雷射加工參數與結構週期的關係,並探討其表面結構成形的過程與物理機制。
研究結果顯示,飛秒雷射誘導表面週期結構技術其雷射加工參數與結構週期大小之關係,其結果大致分成兩種形態,一種主要由雷射的脈衝重複率決定,其週期結構隨著雷射的脈衝重複率越高而週期有越來越短的趨勢;另一種則主要由雷射的脈衝能量決定,隨著雷射脈衝能量越低而變小。此外,結構週期形態也會隨著雷射功率的大小與掃描速度的不同而有變化,其結構型態大致可分成兩種,一種單純只有垂直雷射掃描方向的週期結構,其雷射能量密度較低,掃描速度較快,結構週期約為900 nm;另一種週期結構則同時存在平行與垂直雷射方向的兩種週期結構,其雷射加工表面能量較高,掃描速度較慢,結構週期約為2 - 5 µm。
STAVAX模具透過FLIPSS技術加工處理完成後,結合熱壓印與射出成形轉印技術,可成功在PMMA與COC平板上轉印出大面積( 8 mm × 8 mm )的表面週期性結構。其中具有FLIPSS之PMMA板,在可見光波段的反射率可降低3 - 4%;但是具有FLIPSS之COC板在可見光波段的直接穿透率則降低10 - 50%。未來研究目標期望透過此技術,可快速大量翻印具有功能性的週期結構與週期小之高分子材料,以期能改進現有的微奈米轉印製程。
The purpose of this thesis is to experimentally generate periodic surface structures on the metal substrate (Both STAVAX stainless mold and Ni-coated STAVAX stainless mold) by femtosecond laser-induced periodic surface structure (FLIPSS) technique. First, a structured metal template was fabricated by femtosecond laser with proper laser fluence, repetition rate, and scanning speed by Ytterbium femtosecond laser system. After the template had been fabricated, it was used as a mold to transfer structure to the polymer plate by sub-micro imprinting method, then the plate’s reflectance and transmittance was measured in visible light region.
As the result, FLIPSS’s period can mainly dependent on fs-laser fluence and number of pulses. The period will become smaller as number of pulses increase and laser fluence decrease. Besides, the structure profile can also be changed with fluence and scanning speed. The structure types can be divided into two types. One only has the direction perpendicular to scanning direction. The structure is formed by lower fs-laser fluence and slower scanning speed with the period close to 900 nm. Another has both perpendicular and parallel directions. Furthermore, the formation of the structures can be determined by higher laser fluence and lower scanning speed with the period from 2 to 5 μm.
Combination of FLIPSS and sub-micro imprinting method (including hot-embossing and injection molding) can successfully transfer the periodic structures to polymer template in an area of 8 mm by 8 mm. FLIPSS on PMMA plate can reduced reflectance about 3 to 4 % in visible light region, but FLIPSS on COC plate unfortunately reduce the transmittance about 10% to 50% in visible light region.
The future prospect of this research is promising to rapidly transfer functional sub-microstructure with smaller period on polymer. Hoping FLIPSS technique can improve the process of imprinting or other industrial applications.
[1] A. Y. Vorobyev and C. Guo, “Antireflection effect of femtosecond laser-induced periodic surface structures on silicon,” Optics Express, Vol. 19, Issue S5, pp. A1031-A1036, 2011.
[2] T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectronic Engineering, Vol. 88, No. 9, pp. 2908-2912, 2011.
[3] T. Y. Hwang, A. Y. Vorobyev and C. Guo, “Formation of solar absorber surface on nickel with femtosecond laser irradiation,” Applied Physics A, Vol. 108, Issue 2, pp. 299-303, 2012.
[4] P. H. Wu, C. W. Cheng, C. P. Chang, T. M. Wu and J. K. Wang, “Fabrication of large-area hydrophobic surfaces with femtosecond-laserstructured molds,” Journal of Micromechanics and Microengineering, Vol. 21, No.11 , pp. 115032-115039, 2012.
[5] L. Orazi, I. Gnilitskyi, I. Pavlov, A. P. Serro, S. Ilday, F. O. Ilday, “Nonlinear laser lithography to control surface properties of stainless steel,” CIRP Annals - Manufacturing Technology, Vol. 64, Issue 1, pp. 193-196, 2015.
[6] A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Applied Physics Letters, Vol. 92, Issue 4, pp. 041914, 2008.
[7] A. Y. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses,” Journal of Applied Physics, Vol. 117, Issue 3, pp. 033103, 2015.
[8] J. Bonse, R. Kotera, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhmb, A. Rosenfeld and J. Krüger, “Tribological performance of femtosecond laser-induced periodicsurface structures on titanium and a high toughness bearing steel,” Applied Surface Science, Vol. 336, pp. 21-27, 2015.
[9] E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectronic Engineering, Vol. 4, Issue 1, pp. 35-56, 1986.
[10] T. L. Chang, K.-Y. Cheng, T. H. Chou, C. C. Su, H.P. Yang, S. W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectronic Engineering, Vol. 86, Issue 4-6, pp. 874-877, 2009.
[11] C. J. Ting, M. C. Huang, H. Y. Tsai, C. P. Chou and C. C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology, Vol. 19, No. 20, pp. 205301, 2008.
[12] H. Deniz, T. Khudiyev, F. Buyukserin and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Applied Physics Letters, Vol. 99, Issue 18, pp. 183107, 2011.
[13] J. Reif, “Basic Physics of Femtosecond Laser Ablation,” ISBN 978-3-642-03307-0, Chap. 2, 2010.
[14] E. Hanamura, Y. Kawabe and A. Yamanaka, “Quantum Nonliner Optics,” ISBN 978-3-540-42332-4, pp.102, 2007.
[15] D. Strickland and G. Mourou., “Compression of Amplified Chirped Optical Pulses” Optics Communications, Vol. 55, No. 6, pp. 447-449, 1985.
[16] O. Svelto, "Principles of Lasers," 5th, ISBN 978-1-4419-1301-2, pp. 318-321, 2010.
[17] J. Krüger and W. Kautek, “Ultrashort Pulse Laser Interaction with Dielectrics and Polymers,” Advance Polymer Science, Vol. 168, pp. 247-289, 2004.
[18] S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nature materials, Vol. 1, pp. 217-224, 2002.
[19] G. Smith K. Kalli and K. Sugden, “Advances in Femtosecond Micromachining and Inscription of Micro and Nano Photonic Devices,” ISBN 978-953-7619-82-4, Chap. 15, 2010.
[20] R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics, Vol. 2, pp. 219-225, 2008.
[21] S. L. Chin, "Femtosecond Laser Filamentation," ISBN 978-1-4419-0687-8, 2010.
[22] G. A. Mourou, D. Du, S. K. Dutta, V. Elner, R. Kurtz, P. R. Lichter, X. Liu, P. P. Pronko, J. A. Squier, “Method for controlling configuration of laser induced breakdown and ablation,” U.S. patent 5-656-186, 1994.
[23] J. E. Sipe, J. F. Young, J. S. Preston and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Physical Review B, Vol. 27, No. 2, pp. 1141-1154, 1983.
[24] J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Physical Review Letters, Vol. 49, No. 26 , pp. 1955-1958, 1982.
[25] J. F. Young, J. S. Preston, H. M. van Drie and J. E. Sipe, “Laser-induced periodic surface structure.II. Experiments on Ge, Si, Al, and brass,” Physical Review B, Vol. 27, No. 2, pp. 1155-1172, 1983
[26] J. F. Young, J. E. Sipe and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Physical Review B, Vol. 30, No. 4, pp. 2001-2015, 1984.
[27] I. Ursut, I. N. Mihfäilescu, A. M. Prokhorov, V. I. Konov, V. N. Tokarev and S. A. Uglovi, “On the mechanism of surface compound formation by powerful microsecond pulsed TEA CO2 laser irradiation in technical nitrogen,” Journal of Physics D: Applied Physics, Vol. 18, No. 12 , pp. 2547-2556, 1985.
[28] A. E. Siegman, P. M. Fauchet, “Stimulated Wood's Anomalies on Laser-Illuminated Surfaces” IEEE Journal of Quantum Electronics, Vol. 22, Issue 8, pp. 1384-1403, 1986.
[29] M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Applied Physics Letters, Vol. 82, Issue. 11, pp. 1715, 2003.
[30] M. Y. Shen, C. H. Crouch, J. E. Carey and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Applied Physics Letters, Vol. 85, Issue 23, pp. 5694, 2004.
[31] G. Miyaji, K. Miyazaki, K. Zhang, T.u Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Optics Express, Vol. 20, No. 14 , pp. 14848-14856, 2012.
[32] B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Optics Express, Vol. 18, No. 3, pp. 2913-2924, 2010.
[33] Y. Shimotsuma, P. G. Kazansky, J. Qiu, K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Physics Review Letters, Vol. 91, No. 24, pp.247405-1 - 247405-4 , 2003.
[34] C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laserstructured silicon,” Applied Physics Letters, Vol. 84, Issue 11, pp. 1850, 2004.
[35] J. Bonse, J. Krüger, S. Höhm and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” Journal of Laser Applications, Vol. 24, Issue 4, pp. 042006, 2012.
[36] A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Applied Physics Letters, Vol. 75, Issue 23, pp. 3719, 1999.
[37] N. Yasumaru, K. Miyazaki, J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Applied Physics A, Vol. 76, Issue 6, pp. 983-985, 2003.
[38] A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Applied Physics Letters, Vol. 82, Issue 25, pp. 4462, 2003.
[39] M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACSNano, Vol. 3, Issue 12, pp. 4062-4070, 2009.
[40] S. Sakabe, M. Hashida, S. Tokita, S. Namba and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Physical Review B, Vol. 79, Issue 3, pp. 033409, 2009.
[41] K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” , Vol. 82, Issue 16, pp. 165417, 2010.
[42] C. A. Zuhlke, T. P. Anderson and Dennis R. Alexander, “Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses” Optics Express, Vol. 21, No. 7, pp. 8460-8473, 2013.
[43] G. D. Tsibidis, C. Fotakis and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Physical Review B, Vol. 92, Issue 4, pp. 041405, 2015.
[44] T. Baldacchini, J. E. Carey, M. Zhou and E. Mazur, “Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser,” Langmuir, Vol. 22, Issue 11, pp. 4917-4919, 2006.
[45] B. Wu, M. Zhou, J. Li, X. Ye, G. Li and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Applied Surface Science, Vol. 256, Issue 1, pp.61-66 , 2009.
[46] J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. V. Gopal, V. A. Trofimov and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Applied Surface Science, Vol. 258, Issue 19, pp. 7625-7632 , 2012.
[47] A.Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Optics Express, Vol. 14, No. 6, pp. 2164-2169 , 2006.
[48] A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” Journal of Applied Physics, Vol. 101, Issue 3, pp. 034903, 2007.
[49] J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L.J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Optics Express, Vol. 20, No. 2 , pp. 905-911, 2012.
[50] M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Optical Engineering, Vol. 51, Issue 12, pp. 12815, 2012.
[51] J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” Journal of Applied Physics Vol. 108, Issue 3, pp. 034903, 2010.
[52] B. D. MacLeod, D. S. Hobbs and E. Sabatino III, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” SPIE Proceeding, Vol. 8016, 2011.
[53] J. Bonse, S. Höhm, A. Rosenfeld, J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Applied Physics A, Vol. 110, Issue 3, pp. 547-551, 2012.
[54] A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin and V. V. Trubaev, “Surface electromagnetic waves in optics,” Optical Engineering, Vol. 31, Issue 4, pp. 718-730, 1992.
[55] M. A. Ordal, R. J. Bell, R. W. Alexander, Jr., L. A. Newquist and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Applied Optics, Vol. 27, No. 6, pp. 1203-1209, 1988.
[56] J. Reif, F. Costache, M. Henyk, S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Applied Surface Science, Vol. 197-198, pp. 891-895, 2002.
[57] V. I. Emel'yanov, “The Kuramoto-Sivashinsky Equation for the Defect-Deformation Instability of a Surface-Stressed Nanolayer,” Laser Physics, Vol. 19, No. 3, pp. 538-543, 2009.