簡易檢索 / 詳目顯示

研究生: 簡宏任
Chien, Hung-Jen
論文名稱: 三維多重訊號人類胰臟組織學方法之建構
Toward 3-D multiplex human pancreas histology in health and disease
指導教授: 湯學成
Tang, Shiue-Cheng
口試委員: 田郁文
Tien, Yun-Wen
陳建嘉
Chen, Chien-Chia
李志元
Lee, Chih-Yuan
林愷悌
Lin, Kai-Ti
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 105
中文關鍵詞: 三維胰臟組織學胰內神經節胰臟神經支配胰臟上皮內瘤樣病變胰島細胞新生
外文關鍵詞: 3-D pancreatic histology, Intrapancreatic ganglia, Pancreatic innervation, Pancreatic intraepithelial neoplasia, Islet cell neogenesis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胰臟是兼具內分泌功能與外分泌功能的器官,具有分泌消化酵素與調控血糖恆定的重要功能。獲取胰臟微結構之資訊對於研究胰臟之生理與疾病極具重要意義,胰臟組織學的知識主要建立於常規組織切片觀察(二維平面)。然而胰臟的結構富含血管網路與神經系統等,具三維空間分布特性的組織,難以利用常規組織學技術進行胰臟網路全貌的分析。
    為了克服研究胰臟神經組織學時遭遇的技術問題,本研究結合共軛焦顯微鏡技術、免疫螢光染色技術與組織透明化技術,擷取人類胰臟之三維影像,並將正常與疾病狀態下的組織三維影像與常規組織學影像進行交叉評估,以研究胰臟組織中的重塑。
    利用三維影像技術,我們建構出人類胰臟於正常與疾病狀態下之傳入和傳出神經的支配模式。由結合胰臟之微結構、脈管系統和神經網路的三維影像資訊,我們發現胰臟內神經節之傳入和傳出神經元具有共定位現象。此外本研究也利用高解析度影像,對人類胰臟中異位性脂肪細胞的神經支配進行分析。並進一步將人類與小鼠的胰臟神經支配模式進行比較。
    我們也以三維影像技術分析人類胰臟中局部蘭氏小島重塑與胰臟上皮內瘤樣病變-蘭氏小島複合物(PanIN–islet complex)的關聯性。我們將發生重塑的微環境之三維影像與常規組織學影像相互比對,觀察到發生重塑之胰臟微環境具有蘭氏小島聚集、發炎反應、基質細胞積累和細胞增殖等特徵。同時也觀察到獨特的導管-蘭氏小島細胞簇和蘭氏小島內導管的形成,這些現象表明胰臟上皮內瘤樣病變-蘭氏小島複合物可能是源於胰臟損傷後組織恢復所產生。
    綜上所述,本研究結合多維(三維與二維)與多重(螢光、穿透光、H&E與IHC)訊號組織學方法,分析人類胰臟中的神經支配模式與局部病變之重塑,強調了此一新穎的成像策略於研究人類胰臟形態學和組織病理學之潛力。


    The pancreas is a vital organ of the exocrine digestive system and a critical regulator of hormone secretion (e.g., insulin and glucagon) to maintain glucose homeostasis in circulation. To study the pancreatic exocrine and endocrine functions in health and disease, histological analysis of the pancreatic microstructure and neurovascular networks is indispensable for evaluating the pancreatic physiology and pathogenesis. To date, investigators routinely use the microtome-based 2-dimensional (2-D) histology to examine the pancreas; yet, the complex nervous and vascular tissues of the organ cannot be easily reconstructed to provide an integrative view of the pancreas tissue networks.
    This thesis develops advanced techniques of multiplex confocal imaging with tissue clearing (or optical clearing) to generate transparent pancreatic specimens for 3-dimensional (3-D) imaging. Both the human donor pancreases and the surgical biopsies of pancreatic cancer were analyzed in the investigation. Importantly, we cross-validate the 3-D image data with the classic 2-D H&E and immunohistochemical images to confirm the tissue remodeling in the disease condition. The background information of the human pancreas and the imaging techniques are summarized in Chapter 1.
    Using our new 3-D approach, we characterized the human pancreatic afferent and efferent innervation patterns in health and at the tumor boundary. The 3-D image data provide a comprehensive view to analyze the pancreatic microstructure, vasculature, and innervation. The results allow us to identify the co-localization of the afferent and efferent neurons in the intra-pancreatic ganglia and reveal the sympathetic and parasympathetic innervation of the infiltrated adipocytes. The comparison between the mouse and human pancreatic innervation is summarized in Chapter 2.
    In Chapter 3, we demonstrate how to use 3-D multiplex histology to study the association between local islet remodeling and the PanIN–islet complex in the human donor pancreas. Our multiplex high-definition images simultaneously reveal the islet aggregation, inflammation, stromal accumulation, cell proliferation, and the likely islet neogenesis, featuring the duct-islet cell cluster and intra-islet ducts, in the peri-lesional microenvironment. The tissue remodeling and the evidence of inflammation and stromal accumulation suggest that the PanIN–islet complex is derived from tissue repair after a local injury.
    In summary, this thesis characterizes the human pancreatic innervation patterns and the local pancreatic and islet remodeling with multi-dimensional and multiplex signals (fluorescence, transmitted light, H&E, and IHC signals), highlighting an importance step of using the modern 3-D histology to understand the unknown features of the human pancreas.

    List of Figures III List of Tables IV Abstract V 摘要 VII Abbreviations VIII Chapter 1: Background 1 1.1 Components of the pancreas 1 1.2 Histology of the pancreas 1 1.2.1 The endocrine 1 1.2.2 The exocrine 3 1.2.3 Vasculature 4 1.2.4 Nerve innervation 5 1.2.5 The connective tissue 6 1.3 Pancreatic intraepithelial neoplasia (PanIN) 6 1.4 Imaging strategies in investigating pancreatic network 7 1.4.1 Routine histology 8 1.4.2 Immunostaining 9 1.4.3 Confocal microscopy 10 1.4.4 Tissue optical clearing 10 Chapter 2: Multi-dimensional and multiplex histology for characterization of the pancreas in healthy and ectopic fat-associated remodeling 13 2.1 Abstract 13 2.2 Introduction 14 2.3 Materials and methods 17 2.3.1 Human specimens 17 2.3.2 Mouse specimens 18 2.3.3 Immunostaining 18 2.3.4 Confocal microscopy 19 2.3.5 Image analysis, processing, and illustration 20 2.4 Result 21 2.4.1 False-negative and false-positive in deep-tissue microscopy of human pancreas 21 2.4.2 Mapping and 3-D illustration of human pancreatic afferent nerves in the parenchyma 22 2.4.3 Comparison between mouse and human pancreatic afferent sensory nerves 23 2.4.4 Comparison of mouse and human pancreatic efferent parasympathetic nerves 24 2.4.5 Comparison of mouse and human pancreatic efferent sympathetic nerves 26 2.4.6 Ganglionic colocalization of afferent and efferent nerves in healthy pancreas and duct lesion formation 26 2.5 Discussion 28 Chapter 3: Local islet remodeling associated with duct lesion–islet complex in adult human pancreas 52 3.1 Abstract 52 3.2 Introduction 53 3.3 Materials and methods 55 3.3.1 Human pancreatic specimens 55 3.3.2 Pancreatic tissue labeling 56 3.3.3 Deep-tissue 3-D confocal microscopy 57 3.3.4 3-D/2-D integrative histology 58 3.3.5 Image projection and analysis 58 3.3.6 Statistical analysis 59 3.4 Result 59 3.4.1 Peri-lobular islet aggregation and duct lesion–islet complex in human pancreas 59 3.4.2 Associated changes of islet and duct in lesion–islet microenvironment 61 3.4.3 Stromal cell accumulation associated with PanIN–islet complex 62 3.4.4 Evidence of tissue injury and regeneration in lesion–islet microenvironment 64 3.4.5 Absence of islet α- and β-cell proliferation in lesion–islet complex 65 3.4.6 In-depth and continuous duct-islet cell contacts and integration in lesion–islet complex 66 3.5 Discussion 67 Chapter 4: Conclusion and Future Work 90 References 92 Appendix 105

    1. Huang, H.H., S. Harrington, and L. Stehno-Bittel, The Flaws and Future of Islet Volume Measurements. Cell Transplant, 2018. 27(7): p. 1017-1026.
    2. Komatsu, H., et al., Oxygen environment and islet size are the primary limiting factors of isolated pancreatic islet survival. PLoS One, 2017. 12(8): p. e0183780.
    3. Peter In’t Veld, S.S., Microscopic Anatomy of the Human Islet of Langerhans., in Islets of Langerhans, M.S. Islam, Editor. 2015, Springer, Dordrecht. p. 19-38.
    4. Brissova, M., et al., Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem, 2005. 53(9): p. 1087-97.
    5. Rahier, J., R.M. Goebbels, and J.C. Henquin, Cellular composition of the human diabetic pancreas. Diabetologia, 1983. 24(5): p. 366-71.
    6. Longnecker, D.S., Anatomy and Histology of the Pancreas The Pancreapedia: Exocrine Pancreas Knowledge Base, 2014.
    7. Meda, P., et al., In vivo modulation of connexin 43 gene expression and junctional coupling of pancreatic B-cells. Exp Cell Res, 1991. 192(2): p. 469-80.
    8. Jansson, L., et al., Pancreatic islet blood flow and its measurement. Ups J Med Sci, 2016. 121(2): p. 81-95.
    9. Ballian, N. and F.C. Brunicardi, Islet vasculature as a regulator of endocrine pancreas function. World J Surg, 2007. 31(4): p. 705-14.
    10. Bouwens, L. and D.G. Pipeleers, Extra-insular beta cells associated with ductules are frequent in adult human pancreas. Diabetologia, 1998. 41(6): p. 629-33.
    11. Shiroya, Y. and K. Minato, Beneficial effects of physical exercise on the exocrine pancreas. The Journal of Physical Fitness and Sports Medicine, 2015. 4: p. 307-313.
    12. Means, A.L. and S.D. Leach, Lineage commitment and cellular differentiation in exocrine pancreas. Pancreatology, 2001. 1(6): p. 587-96.
    13. Motta, P.M., et al., Histology of the exocrine pancreas. Microsc Res Tech, 1997. 37(5-6): p. 384-98.
    14. Cleveland, M.H., et al., Exocrine ontogenies: on the development of pancreatic acinar, ductal and centroacinar cells. Semin Cell Dev Biol, 2012. 23(6): p. 711-9.
    15. Beer, R.L., M.J. Parsons, and M. Rovira, Centroacinar cells: At the center of pancreas regeneration. Dev Biol, 2016. 413(1): p. 8-15.
    16. Inada, A., et al., Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci U S A, 2008. 105(50): p. 19915-9.
    17. Nina W. Flay, F.S.G., Exocrine Pancreas, in Encyclopedia of Gastroenterology, L.R. Johnson, Editor. 2004, Elsevier. p. 769-774.
    18. Reichert, M. and A.K. Rustgi, Pancreatic ductal cells in development, regeneration, and neoplasia. J Clin Invest, 2011. 121(12): p. 4572-8.
    19. Villasenor, A., et al., Epithelial dynamics of pancreatic branching morphogenesis. Development, 2010. 137(24): p. 4295-305.
    20. Mahadevan, V., Anatomy of the pancreas and spleen. Surgery (Oxford), 2019. 37(6): p. 297-301.
    21. Okahara, M., et al., Arterial supply to the pancreas; variations and cross-sectional anatomy. Abdom Imaging, 2010. 35(2): p. 134-42.
    22. Almaca, J. and A. Caicedo, Blood Flow in the Pancreatic Islet: Not so Isolated Anymore. Diabetes, 2020. 69(7): p. 1336-1338.
    23. Dybala, M.P., et al., Integrated Pancreatic Blood Flow: Bidirectional Microcirculation Between Endocrine and Exocrine Pancreas. Diabetes, 2020. 69(7): p. 1439-1450.
    24. Pandiri, A.R., Overview of exocrine pancreatic pathobiology. Toxicol Pathol, 2014. 42(1): p. 207-16.
    25. Purice, G.I. and G. Onose, Microanatomical study of the human pancreatic made on necroptic pieces. J Med Life, 2012. 5(Spec Issue): p. 102-109.
    26. El-Gohary, Y., et al., Whole-mount imaging demonstrates hypervascularity of the pancreatic ducts and other pancreatic structures. Anat Rec (Hoboken), 2012. 295(3): p. 465-73.
    27. Santambrogio, L., The Lymphatic Fluid. Int Rev Cell Mol Biol, 2018. 337: p. 111-133.
    28. O'Morchoe, C.C., Lymphatic system of the pancreas. Microsc Res Tech, 1997. 37(5-6): p. 456-77.
    29. Cesmebasi, A., et al., The surgical anatomy of the lymphatic system of the pancreas. Clin Anat, 2015. 28(4): p. 527-37.
    30. Korsgren, E. and O. Korsgren, An Apparent Deficiency of Lymphatic Capillaries in the Islets of Langerhans in the Human Pancreas. Diabetes, 2016. 65(4): p. 1004-8.
    31. Proshchina, A., et al. Development of Human Pancreatic Innervation. 2018.
    32. Ushiki, T. and S. Watanabe, Distribution and ultrastructure of the autonomic nerves in the mouse pancreas. Microsc Res Tech, 1997. 37(5-6): p. 399-406.
    33. Rodriguez-Diaz, R., et al., Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab, 2011. 14(1): p. 45-54.
    34. Tang, S.C., et al., Human pancreatic neuro-insular network in health and fatty infiltration. Diabetologia, 2018. 61(1): p. 168-181.
    35. Tang, S.C., et al., Pancreatic neuro-insular network in young mice revealed by 3D panoramic histology. Diabetologia, 2018. 61(1): p. 158-167.
    36. Love, J.A., E. Yi, and T.G. Smith, Autonomic pathways regulating pancreatic exocrine secretion. Auton Neurosci, 2007. 133(1): p. 19-34.
    37. Grundy, D., Neuroanatomy of visceral nociception: vagal and splanchnic afferent. Gut, 2002. 51 Suppl 1: p. i2-5.
    38. Li, W., et al., Intrapancreatic Ganglia and Neural Regulation of Pancreatic Endocrine Secretion. Front Neurosci, 2019. 13: p. 21.
    39. Chey, W.Y. and T. Chang, Neural hormonal regulation of exocrine pancreatic secretion. Pancreatology, 2001. 1(4): p. 320-35.
    40. Rodriguez-Diaz, R. and A. Caicedo, Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab, 2014. 28(5): p. 745-56.
    41. Havel, P.J. and G.J. Taborsky, Jr., The Contribution of the Autonomic Nervous System to Changes of Glucagon and Insulin Secretion during Hypoglycemic Stress*. Endocrine Reviews, 1989. 10(3): p. 332-350.
    42. Campbell, F.e.a., Ductal Adenocarcinoma, in Pathology of the Pancreas, F. Campbell, Verbeke, Caroline S., Editor. 2013. p. 145-201.
    43. Distler, M., et al., Precursor lesions for sporadic pancreatic cancer: PanIN, IPMN, and MCN. Biomed Res Int, 2014. 2014: p. 474905.
    44. Takaori, K., et al., Clinicopathological features of pancreatic intraepithelial neoplasias and their relationship to intraductal papillary-mucinous tumors. J Hepatobiliary Pancreat Surg, 2003. 10(2): p. 125-36.
    45. Hruban, R.H., et al., Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol, 2001. 25(5): p. 579-86.
    46. Basturk, O., et al., A Revised Classification System and Recommendations From the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. Am J Surg Pathol, 2015. 39(12): p. 1730-41.
    47. Bhanot, U., et al., Survivin expression in pancreatic intraepithelial neoplasia (PanIN): steady increase along the developmental stages of pancreatic ductal adenocarcinoma. Am J Surg Pathol, 2006. 30(6): p. 754-9.
    48. Hruban, R.H., et al., Precursors to pancreatic cancer. Gastroenterol Clin North Am, 2007. 36(4): p. 831-49, vi.
    49. Hassid, B.G., et al., Absence of pancreatic intraepithelial neoplasia predicts poor survival after resection of pancreatic cancer. Pancreas, 2014. 43(7): p. 1073-7.
    50. Canto, M.I., et al., Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology, 2012. 142(4): p. 796-804; quiz e14-5.
    51. Hruban, R.H. and N. Fukushima, Pancreatic adenocarcinoma: update on the surgical pathology of carcinomas of ductal origin and PanINs. Mod Pathol, 2007. 20 Suppl 1: p. S61-70.
    52. Ren, B., X. Liu, and A.A. Suriawinata, Pancreatic Ductal Adenocarcinoma and Its Precursor Lesions: Histopathology, Cytopathology, and Molecular Pathology. Am J Pathol, 2019. 189(1): p. 9-21.
    53. Detlefsen, S., et al., Pancreatic fibrosis associated with age and ductal papillary hyperplasia. Virchows Arch, 2005. 447(5): p. 800-5.
    54. Brune, K., et al., Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am J Surg Pathol, 2006. 30(9): p. 1067-76.
    55. Shi, J. and J. Xue, Inflammation and development of pancreatic ductal adenocarcinoma. Chin Clin Oncol, 2019. 8(2): p. 19.
    56. Rebours, V., et al., Obesity and Fatty Pancreatic Infiltration Are Risk Factors for Pancreatic Precancerous Lesions (PanIN). Clin Cancer Res, 2015. 21(15): p. 3522-8.
    57. Matsuda, Y., Age-related morphological changes in the pancreas and their association with pancreatic carcinogenesis. Pathol Int, 2019. 69(8): p. 450-462.
    58. Chatterjee, D., et al., Pancreatic intraepithelial neoplasia and histological changes in non-neoplastic pancreas associated with neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma. Histopathology, 2013. 63(6): p. 841-51.
    59. Rosai, J., Why microscopy will remain a cornerstone of surgical pathology. Lab Invest, 2007. 87(5): p. 403-8.
    60. Richardson, D.S. and J.W. Lichtman, Clarifying Tissue Clearing. Cell, 2015. 162(2): p. 246-257.
    61. Fu, Y.Y., et al., Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution. J Biomed Opt, 2010. 15(4): p. 046018.
    62. Seo, J., M. Choe, and S.Y. Kim, Clearing and Labeling Techniques for Large-Scale Biological Tissues. Mol Cells, 2016. 39(6): p. 439-46.
    63. Feldman, A.T. and D. Wolfe, Tissue processing and hematoxylin and eosin staining. Methods Mol Biol, 2014. 1180: p. 31-43.
    64. Slaoui, M. and L. Fiette, Histopathology procedures: from tissue sampling to histopathological evaluation. Methods Mol Biol, 2011. 691: p. 69-82.
    65. Taqi, S.A., et al., A review of artifacts in histopathology. J Oral Maxillofac Pathol, 2018. 22(2): p. 279.
    66. Chatterjee, S., Artefacts in histopathology. J Oral Maxillofac Pathol, 2014. 18(Suppl 1): p. S111-6.
    67. Bindhu, P., et al., Facts in artifacts. J Oral Maxillofac Pathol, 2013. 17(3): p. 397-401.
    68. Sanderson, M.J., et al., Fluorescence microscopy. Cold Spring Harb Protoc, 2014. 2014(10): p. pdb top071795.
    69. Nwaneshiudu, A., et al., Introduction to confocal microscopy. J Invest Dermatol, 2012. 132(12): p. e3.
    70. Jonkman, J. and C.M. Brown, Any Way You Slice It-A Comparison of Confocal Microscopy Techniques. J Biomol Tech, 2015. 26(2): p. 54-65.
    71. Paddock, S.W., Principles and practices of laser scanning confocal microscopy. Mol Biotechnol, 2000. 16(2): p. 127-49.
    72. Tomer, R., et al., Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc, 2014. 9(7): p. 1682-97.
    73. Ke, M.T., S. Fujimoto, and T. Imai, SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci, 2013. 16(8): p. 1154-61.
    74. Fu, Y.Y., et al., Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution. Gastroenterology, 2009. 137(2): p. 453-65.
    75. Santi, P.A., et al., Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. Biotechniques, 2009. 46(4): p. 287-94.
    76. Clendenon, S.G., et al., Deep tissue fluorescent imaging in scattering specimens using confocal microscopy. Microsc Microanal, 2011. 17(4): p. 614-7.
    77. Silvestri, L., et al., Clearing of fixed tissue: a review from a microscopist's perspective. J Biomed Opt, 2016. 21(8): p. 081205.
    78. Ueda, H.R., et al., Tissue clearing and its applications in neuroscience. Nat Rev Neurosci, 2020. 21(2): p. 61-79.
    79. Ntziachristos, V., Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods, 2010. 7(8): p. 603-14.
    80. Kim, J.H., et al., Optimizing tissue-clearing conditions based on analysis of the critical factors affecting tissue-clearing procedures. Sci Rep, 2018. 8(1): p. 12815.
    81. Yu, T., et al., Physical and chemical mechanisms of tissue optical clearing. iScience, 2021. 24(3): p. 102178.
    82. Tian, T., Z. Yang, and X. Li, Tissue clearing technique: Recent progress and biomedical applications. J Anat, 2021. 238(2): p. 489-507.
    83. Dodt, H.U., et al., Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods, 2007. 4(4): p. 331-6.
    84. Erturk, A., et al., Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc, 2012. 7(11): p. 1983-95.
    85. Renier, N., et al., iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell, 2014. 159(4): p. 896-910.
    86. Qi, Y., et al., FDISCO: Advanced solvent-based clearing method for imaging whole organs. Sci Adv, 2019. 5(1): p. eaau8355.
    87. Wan, P., et al., Evaluation of seven optical clearing methods in mouse brain. Neurophotonics, 2018. 5(3): p. 035007.
    88. Azaripour, A., et al., A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog Histochem Cytochem, 2016. 51(2): p. 9-23.
    89. Piro, S., et al., The Endocrine Pancreas, in Principles of Endocrinology and Hormone Action, A. Belfiore and D. LeRoith, Editors. 2018, Springer International Publishing: Cham. p. 423-454.
    90. Da Silva Xavier, G., The Cells of the Islets of Langerhans. J Clin Med, 2018. 7(3).
    91. Roder, P.V., et al., Pancreatic regulation of glucose homeostasis. Exp Mol Med, 2016. 48: p. e219.
    92. Ishiguro, H., et al., Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci, 2012. 74(1-2): p. 1-18.
    93. Ahren, B., Autonomic regulation of islet hormone secretion--implications for health and disease. Diabetologia, 2000. 43(4): p. 393-410.
    94. Guemes, A. and P. Georgiou, Review of the role of the nervous system in glucose homoeostasis and future perspectives towards the management of diabetes. Bioelectron Med, 2018. 4: p. 9.
    95. McCorry, L.K., Physiology of the autonomic nervous system. Am J Pharm Educ, 2007. 71(4): p. 78.
    96. Thorens, B., Neural regulation of pancreatic islet cell mass and function. Diabetes Obes Metab, 2014. 16 Suppl 1: p. 87-95.
    97. Ahren, B. and J.J. Holst, The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes, 2001. 50(5): p. 1030-8.
    98. Taylor, I.L. and M. Feldman, Effect of cephalic-vagal stimulation on insulin, gastric inhibitory polypeptide, and pancreatic polypeptide release in humans. J Clin Endocrinol Metab, 1982. 55(6): p. 1114-7.
    99. Klein, E., et al., Effects of autonomic denervation on canine exocrine pancreatic secretion and blood flow. Int J Pancreatol, 1988. 3(2-3): p. 165-70.
    100. Taborsky, G.J., Jr., The physiology of glucagon. J Diabetes Sci Technol, 2010. 4(6): p. 1338-44.
    101. Li, Q. and J. Peng, Sensory nerves and pancreatitis. Gland Surg, 2014. 3(4): p. 284-92.
    102. di Mola, F.F. and P. di Sebastiano, Pain and pain generation in pancreatic cancer. Langenbecks Arch Surg, 2008. 393(6): p. 919-22.
    103. Ceyhan, G.O., et al., Pancreatic neuropathy and neuropathic pain--a comprehensive pathomorphological study of 546 cases. Gastroenterology, 2009. 136(1): p. 177-186 e1.
    104. Ceyhan, G.O., et al., Pancreatic neuropathy results in "neural remodeling" and altered pancreatic innervation in chronic pancreatitis and pancreatic cancer. Am J Gastroenterol, 2009. 104(10): p. 2555-65.
    105. Ceyhan, G.O., et al., Fate of nerves in chronic pancreatitis: Neural remodeling and pancreatic neuropathy. Best Pract Res Clin Gastroenterol, 2010. 24(3): p. 311-22.
    106. Taborsky, G.J., Jr., et al., Loss of islet sympathetic nerves and impairment of glucagon secretion in the NOD mouse: relationship to invasive insulitis. Diabetologia, 2009. 52(12): p. 2602-11.
    107. Christoffersson, G., S.S. Ratliff, and M.G. von Herrath, Interference with pancreatic sympathetic signaling halts the onset of diabetes in mice. Sci Adv, 2020. 6(35).
    108. Chien, H.J., et al., 3-D imaging of islets in obesity: formation of the islet-duct complex and neurovascular remodeling in young hyperphagic mice. Int J Obes (Lond), 2016. 40(4): p. 685-97.
    109. Dolensek, J., M.S. Rupnik, and A. Stozer, Structural similarities and differences between the human and the mouse pancreas. Islets, 2015. 7(1): p. e1024405.
    110. Crippa, S., et al., Anastomotic leakage in pancreatic surgery. HPB (Oxford), 2007. 9(1): p. 8-15.
    111. Hirsch, R.E., R.S. Zukin, and R.L. Nagel, Intrinsic fluorescence emission of intact oxy hemoglobins. Biochem Biophys Res Commun, 1980. 93(2): p. 432-9.
    112. Furuzawa, Y., Y. Ohmori, and T. Watanabe, Anatomical localization of sympathetic postganglionic and sensory neurons innervating the pancreas of the cat. J Vet Med Sci, 1996. 58(3): p. 243-8.
    113. Amella, C., et al., Spatial and temporal dynamics of innervation during the development of fetal human pancreas. Neuroscience, 2008. 154(4): p. 1477-87.
    114. Geerling, J.J., et al., Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J Lipid Res, 2014. 55(2): p. 180-9.
    115. Kumon, A., et al., Mechanism of lipolysis induced by electrical stimulation of the hypothalamus in the rabbit. J Lipid Res, 1976. 17(6): p. 551-8.
    116. Caron, A., et al., Leptin and brain-adipose crosstalks. Nat Rev Neurosci, 2018. 19(3): p. 153-165.
    117. Bartness, T.J., et al., Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol, 2010. 318(1-2): p. 34-43.
    118. Kreier, F., et al., Selective parasympathetic innervation of subcutaneous and intra-abdominal fat--functional implications. J Clin Invest, 2002. 110(9): p. 1243-50.
    119. Giordano, A., et al., White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am J Physiol Regul Integr Comp Physiol, 2006. 291(5): p. R1243-55.
    120. Lettner, A. and M. Roden, Ectopic fat and insulin resistance. Curr Diab Rep, 2008. 8(3): p. 185-91.
    121. Yki-Jarvinen, H., Ectopic fat accumulation: an important cause of insulin resistance in humans. J R Soc Med, 2002. 95 Suppl 42: p. 39-45.
    122. Thorens, B., Central control of glucose homeostasis: the brain--endocrine pancreas axis. Diabetes Metab, 2010. 36 Suppl 3: p. S45-9.
    123. Goke, B., Islet cell function: alpha and beta cells--partners towards normoglycaemia. Int J Clin Pract Suppl, 2008(159): p. 2-7.
    124. Batterham, R.L., et al., Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab, 2003. 88(8): p. 3989-92.
    125. Granata, R., et al., Unraveling the role of the ghrelin gene peptides in the endocrine pancreas. J Mol Endocrinol, 2010. 45(3): p. 107-18.
    126. Bonner-Weir, S., B.A. Sullivan, and G.C. Weir, Human Islet Morphology Revisited: Human and Rodent Islets Are Not So Different After All. J Histochem Cytochem, 2015. 63(8): p. 604-12.
    127. Dybala, M.P. and M. Hara, Heterogeneity of the Human Pancreatic Islet. Diabetes, 2019. 68(6): p. 1230-1239.
    128. Reinert, R.B., et al., Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding. Development, 2014. 141(7): p. 1480-91.
    129. Jansson, L. and C. Hellerstrom, Glucose-induced changes in pancreatic islet blood flow mediated by central nervous system. Am J Physiol, 1986. 251(6 Pt 1): p. E644-7.
    130. Moin, A.S.M., et al., Pancreatic alpha-cell mass across adult human lifespan. Eur J Endocrinol, 2020. 182(2): p. 219-231.
    131. Saisho, Y., et al., Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat, 2007. 20(8): p. 933-42.
    132. Saisho, Y., et al., beta-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care, 2013. 36(1): p. 111-7.
    133. Wood, L.D. and R.H. Hruban, Pathology and molecular genetics of pancreatic neoplasms. Cancer J, 2012. 18(6): p. 492-501.
    134. Grapin-Botton, A., Ductal cells of the pancreas. Int J Biochem Cell Biol, 2005. 37(3): p. 504-10.
    135. Haugk, B., Pancreatic intraepithelial neoplasia-can we detect early pancreatic cancer? Histopathology, 2010. 57(4): p. 503-14.
    136. Hruban, R.H., A. Maitra, and M. Goggins, Update on pancreatic intraepithelial neoplasia. Int J Clin Exp Pathol, 2008. 1(4): p. 306-16.
    137. Andea, A., F. Sarkar, and V.N. Adsay, Clinicopathological correlates of pancreatic intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma. Mod Pathol, 2003. 16(10): p. 996-1006.
    138. Konstantinidis, I.T., et al., Incidentally discovered pancreatic intraepithelial neoplasia: what is its clinical significance? Ann Surg Oncol, 2013. 20(11): p. 3643-7.
    139. Vincent, A., et al., Pancreatic cancer. Lancet, 2011. 378(9791): p. 607-20.
    140. Jones, S., et al., Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 2008. 321(5897): p. 1801-6.
    141. Yu, J., et al., Time to progression of pancreatic ductal adenocarcinoma from low-to-high tumour stages. Gut, 2015. 64(11): p. 1783-9.
    142. Wang, L., D. Xie, and D. Wei, Pancreatic Acinar-to-Ductal Metaplasia and Pancreatic Cancer. Methods Mol Biol, 2019. 1882: p. 299-308.
    143. Whitcomb, D.C., Inflammation and Cancer V. Chronic pancreatitis and pancreatic cancer. Am J Physiol Gastrointest Liver Physiol, 2004. 287(2): p. G315-9.
    144. Murtaugh, L.C. and M.D. Keefe, Regeneration and repair of the exocrine pancreas. Annu Rev Physiol, 2015. 77: p. 229-49.
    145. De Groef, S., et al., Surgical Injury to the Mouse Pancreas through Ligation of the Pancreatic Duct as a Model for Endocrine and Exocrine Reprogramming and Proliferation. J Vis Exp, 2015(102): p. e52765.
    146. Walker, N.I., Ultrastructure of the rat pancreas after experimental duct ligation. I. The role of apoptosis and intraepithelial macrophages in acinar cell deletion. Am J Pathol, 1987. 126(3): p. 439-51.
    147. Wang, R.N., G. Kloppel, and L. Bouwens, Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia, 1995. 38(12): p. 1405-11.
    148. Lin, P.Y., et al., PanIN–associated pericyte, glial, and islet remodeling in mice revealed by 3D pancreatic duct lesion histology. Am J Physiol Gastrointest Liver Physiol, 2016. 311(3): p. G412-22.
    149. Xiao, X., et al., No evidence for beta cell neogenesis in murine adult pancreas. J Clin Invest, 2013. 123(5): p. 2207-17.
    150. Rankin, M.M., et al., beta-Cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes, 2013. 62(5): p. 1634-45.
    151. MacDonald, M.J., et al., Differences between human and rodent pancreatic islets: low pyruvate carboxylase, atp citrate lyase, and pyruvate carboxylation and high glucose-stimulated acetoacetate in human pancreatic islets. J Biol Chem, 2011. 286(21): p. 18383-96.
    152. Arutyunyan, I.V., et al., Regenerative medicine of pancreatic islets. World J Gastroenterol, 2020. 26(22): p. 2948-2966.
    153. Bonner-Weir, S., et al., Islet neogenesis: a possible pathway for beta-cell replenishment. Rev Diabet Stud, 2012. 9(4): p. 407-16.
    154. Xu, X., et al., Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell, 2008. 132(2): p. 197-207.
    155. Phillips, J.M., et al., Patients with chronic pancreatitis have islet progenitor cells in their ducts, but reversal of overt diabetes in NOD mice by anti-CD3 shows no evidence for islet regeneration. Diabetes, 2007. 56(3): p. 634-40.
    156. Carpino, G., et al., Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study. J Anat, 2016. 228(3): p. 474-86.
    157. Van de Casteele, M., et al., Partial duct ligation: beta-cell proliferation and beyond. Diabetes, 2014. 63(8): p. 2567-77.
    158. Aguayo-Mazzucato, C. and S. Bonner-Weir, Pancreatic beta Cell Regeneration as a Possible Therapy for Diabetes. Cell Metab, 2018. 27(1): p. 57-67.
    159. Bonner-Weir, S., et al., A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes, 1993. 42(12): p. 1715-20.
    160. Brockenbrough, J.S., G.C. Weir, and S. Bonner-Weir, Discordance of exocrine and endocrine growth after 90% pancreatectomy in rats. Diabetes, 1988. 37(2): p. 232-6.
    161. Kolodziej, M., et al., Influence of glucose and insulin in human adipogenic differentiation models with adipose-derived stem cells. Adipocyte, 2019. 8(1): p. 254-264.

    QR CODE