簡易檢索 / 詳目顯示

研究生: 蔡秝凱
Li-Kai Tsai
論文名稱: 正交性複合材料中裂縫前端的微觀尺度應力強度因子
The Micro-Scale Stress Intensity Factor around the Crack Tip in Orthotropic Composites
指導教授: 蔣長榮
Chun-Ron Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 81
中文關鍵詞: 複合材料正交性複合材料裂縫微觀尺度分析應力強度因子無因次應力強度因子
外文關鍵詞: Composite Materials, Orthotropic Composites, Crack, Micro-Scale Analysis, Stress Intensity Factor, Dimensionless Stress Intensity Factor, KI, SIF
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 應力強度因子(Stress Intensity Factor)K為一評估材料強度的重要指標,在本文中我們假定在巨觀下正交性複合材料(Orthotropic Composite Materials)的應力強度因子為1來求相對微觀尺度下鈍化型裂縫前端位於基材與纖維各分析點處的無因次應力強度因子K。我們以工程分析軟體ANSYS與Matlab來輔助我們模擬分析非均質性材料的破裂問題,並由已知結果的正確解先確定有限元素模型的合理性,然後再以兩種不同的數值步驟來求得K值。我們發現裂縫位於彈性係數較大的纖維內將比位於彈性係數較小的基材內有較大的K值,也由此可知複合材料大部分的應力均由纖維所承受。


    The stress intensity factor (S.I.F) has widely been used in the evaluation of material strength in the presence of a crack. When a crack in a composite material is treated as a crack in a homogeneous anisotropic material, the derived S.I.F can only be used in characterizing the material properties at macroscopic scales. To characterize the material behavior at microscopic scales, the presence of the inhomogeneities around the crack tip must be taken into consideration. In this thesis, an idealized case for a fibrous composite is studied. The crack is assumed to be normal to the fiber direction and subjected to Mode-I loading. To avoid numerical difficulty, the crack tip is taken to be rounded with a finite radius of curvature. The near-tip stress distribution at the microscopic scale is determined by ANSYS and Matlab, then the associated microscopic S.I.Fs are extracted by two different numerical approaches. We have found that the larger modulus of elasticity in the fiber has higher S.I.Fs than the smaller one in the matrix. Clearly, most of stress is supported by fibers in a composite material. It is concluded that for the same macro-S.I.Fs, the micro-S.I.Fs may be significantly different depending on the crack tip position and the elastic properties of the constituent phases of the composite.

    摘要……………………………………………………………………… i Abstract…………………………………………………………………ii 誌謝辭………………………………………………………………… iii 目錄………………………………………………………………………iv 圖表目錄…………………………………………………………………vi 第一章 緒論………………………………………………………… 1 1.1 前言………………………………………………………………1 1.2 研究動機與目的…………………………………………………2 1.3 文獻回顧…………………………………………………………4 第二章 基本理論…………………………………………………… 6 2.1 複合材料力學……………………………………………… 6 2.2 單層板之材料等效彈性模數……………………………… 6 2.3 單層板之應力─應變關係………………………………… 8 2.4 線彈性破裂力學原理………………………………………10 2.5 異向性彈性理論……………………………………………11 2.6 正交性材料的破裂力學……………………………………14 2.7 應力強度因子………………………………………………18 2.8 正交性之無窮大平板含一橢圓裂縫的應力場……………19 第三章 有限單元法基本觀念………………………………………23 3.1 等參數單元之說明………………………………………………23 3.2 高斯積分…………………………………………………………24 3.3 有限單元方程式…………………………………………………25 第四章 模型建立與應力強度因子的分析…………………………28 4.1 問題描述…………………………………………………………28 4.2 模型的建立………………………………………………………28 4.3 模型的分析………………………………………………………29 第五章 結果與討論…………………………………………………33 第六章 結論…………………………………………………………40 參考文獻……………………………………………………………… 79

    1.D. Broek著,陳文華、張士欽合譯,基本工程破裂力學,世界學術
    譯著,國立編譯館出版,台北市,1995。

    2. G. M. Boyd, “Fracture Design Practices For Ship
    Structures,” in H. Liebowitz(ed.), Fracture-An Advanced
    Treatise: Volume V Fracture Design of Structures, pp. 383-
    470, Academic Press, New York and London, 1969.

    3. V. F. Zackay, W. W. Gerberich, and E. R. Parker,
    “Structural Modes of Fracture,” in H. Liebowitz(ed.),
    Fracture-An Advanced Treatise: Volume I Microscopic and
    Macroscopic Fundamentals, pp. 395-440, Academic Press,
    New York and London, 1968.

    4. 洪慶章、謝忠祐、賴育良、劉清吉、陳義坤、郭嘉源編著,有限
    元素分析基礎篇ANSYS與Matlab,夸克工作室編輯,知城數位科技
    股份有限公司出版,台北市,2001。

    5. A. A. Griffith, “The Phenomena of Rupture and Flow in
    Solid,” Philosophical Transactions of the Royal Society,
    221A, pp. 163-198, 1920.

    6. G. C. Sih, and H. Liebowitz, “Mathematical Theories of
    Brittle Fracture,” in H. Liebowitz (ed.), Fracture-An
    Advanced Treatise: Volume II Mathematical Fundamentals,
    pp. 67-190, Academic Press, New York and London, 1968.

    7. R. F. Gibson, Principles of Composite Material
    Mechanics, McGraw-Hill, Inc. International Editions,
    1994.

    8. M. D. Snyder, and T. A. Cruse, “Boundary-Integral
    Equation Analysis of Cracked Anisotropic Plates,”
    Internal Journal of Fracture, Vol. 11, pp. 315-328, 1975.

    9.M. E. Waddoups, J. R. Eisenmann, and B. E. Kaminski,
    “Macroscopic Mechanics of Advanced Composite Materials,”
    Journal of Composite Materials, Vol. 5, pp. 446-454, 1971.

    10.G. C. Sih, and E. P. Chen, “Fracture Analysis of
    Unidirectional Composite,” Journal of Composite
    Materials, Vol. 7, pp. 230-244, 1973.

    11.M. Creager, and P. C. Paris, “Elastic Field Equations
    for Blunt Cracks with reference to Stress Corrosion
    Cracking,” International Journal of Fracture, Vol. 3,
    pp. 247-252, 1967.

    12.J. P. Benthem, “Stress in the Region of Rounded
    Corners,” International Journal of Solids and
    Structures, Vol. 23, pp. 239-252, 1987.

    13.G. C. Sih, P. C. Paris, and G. R. Irwin, “On Cracks in
    Rectilinearly Anisotropic Bodies,” International
    Journal of Fracture, Vol. 1, pp. 189-302, 1965.

    14.C. R. Chiang, “Kinked Cracks in an Anisotropic
    Material,” Engineering Fracture Mechanics, Vol. 39, pp.
    927-930, 1991.

    15.C. R. Chiang, “The Stress Field for a Blunt Crack in an
    Anisotropic Material,” International Journal of
    Fracture, Vol. 68, R41-R46, 1994. (and addendum in
    International Journal of Fracture, Vol. 70, R99, 1995.)

    16.S. Parhizgar, L. W. Zachary, and C. T. Sun,
    “Application of the principles of linear fracture
    mechanics to the composite materials,” International
    Journal of Fracture, Vol. 20, pp. 3-15, 1982.

    17.C. R. Chiang, “The Elastic Stress Fields near Blunt
    Crack Tips in Orthotropic Materials,” 第十六屆機械工程研
    討會論文集,pp. 366-372, 1999.

    18.盧廷鉅,“含孔複材疊層板應力分析─有限元素法解”,碩士論
    文,國立清華大學,1993。

    19.R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts and
    Application of Finite Element Analysis, 3th ed., John
    Wiley and Sons, Inc., 1989.

    20.C. R. Chiang, “On The Stress Intensity Factors of
    Cracks Near an Interface Between Two Media,”
    International Journal of Fracture, Vol. 47, R55-R58,
    1991.

    21.陳俊達,“正交疊層板[90]層橫向裂縫的微觀應力分析”,碩士
    論文,國立清華大學,2003。

    22.C. R. Chiang, “On Stress Concentration Factors In
    Orthotropic Materials,” Journal of the Chinese
    Institute of Engineers, Vol. 22, No. 3, pp. 301-305,
    1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE